Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MutaGAN: A Seq2seq GAN Framework to Predict Mutations of Evolving Protein Populations (2008.11790v1)

Published 26 Aug 2020 in q-bio.QM, cs.LG, and stat.ML

Abstract: The ability to predict the evolution of a pathogen would significantly improve the ability to control, prevent, and treat disease. Despite significant progress in other problem spaces, deep learning has yet to contribute to the issue of predicting mutations of evolving populations. To address this gap, we developed a novel machine learning framework using generative adversarial networks (GANs) with recurrent neural networks (RNNs) to accurately predict genetic mutations and evolution of future biological populations. Using a generalized time-reversible phylogenetic model of protein evolution with bootstrapped maximum likelihood tree estimation, we trained a sequence-to-sequence generator within an adversarial framework, named MutaGAN, to generate complete protein sequences augmented with possible mutations of future virus populations. Influenza virus sequences were identified as an ideal test case for this deep learning framework because it is a significant human pathogen with new strains emerging annually and global surveillance efforts have generated a large amount of publicly available data from the National Center for Biotechnology Information's (NCBI) Influenza Virus Resource (IVR). MutaGAN generated "child" sequences from a given "parent" protein sequence with a median Levenshtein distance of 2.00 amino acids. Additionally, the generator was able to augment the majority of parent proteins with at least one mutation identified within the global influenza virus population. These results demonstrate the power of the MutaGAN framework to aid in pathogen forecasting with implications for broad utility in evolutionary prediction for any protein population.

Citations (7)

Summary

We haven't generated a summary for this paper yet.