Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covariance Matrix Estimation from Linearly-Correlated Gaussian Samples (1808.01123v2)

Published 3 Aug 2018 in cs.IT and math.IT

Abstract: Covariance matrix estimation concerns the problem of estimating the covariance matrix from a collection of samples, which is of extreme importance in many applications. Classical results have shown that $O(n)$ samples are sufficient to accurately estimate the covariance matrix from $n$-dimensional independent Gaussian samples. However, in many practical applications, the received signal samples might be correlated, which makes the classical analysis inapplicable. In this paper, we develop a non-asymptotic analysis for the covariance matrix estimation from correlated Gaussian samples. Our theoretical results show that the error bounds are determined by the signal dimension $n$, the sample size $m$, and the shape parameter of the distribution of the correlated sample covariance matrix. Particularly, when the shape parameter is a class of Toeplitz matrices (which is of great practical interest), $O(n)$ samples are also sufficient to faithfully estimate the covariance matrix from correlated samples. Simulations are provided to verify the correctness of the theoretical results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.