Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Vision Reinforcement Learning under Limited Visual Observability (2306.00975v2)

Published 1 Jun 2023 in cs.LG, cs.CV, and cs.RO

Abstract: In this work, we investigate Active Vision Reinforcement Learning (ActiveVision-RL), where an embodied agent simultaneously learns action policy for the task while also controlling its visual observations in partially observable environments. We denote the former as motor policy and the latter as sensory policy. For example, humans solve real world tasks by hand manipulation (motor policy) together with eye movements (sensory policy). ActiveVision-RL poses challenges on coordinating two policies given their mutual influence. We propose SUGARL, Sensorimotor Understanding Guided Active Reinforcement Learning, a framework that models motor and sensory policies separately, but jointly learns them using with an intrinsic sensorimotor reward. This learnable reward is assigned by sensorimotor reward module, incentivizes the sensory policy to select observations that are optimal to infer its own motor action, inspired by the sensorimotor stage of humans. Through a series of experiments, we show the effectiveness of our method across a range of observability conditions and its adaptability to existed RL algorithms. The sensory policies learned through our method are observed to exhibit effective active vision strategies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jinghuan Shang (10 papers)
  2. Michael S. Ryoo (75 papers)