Papers
Topics
Authors
Recent
2000 character limit reached

Neuronal Cell Type Classification using Deep Learning

Published 1 Jun 2023 in cs.LG, eess.SP, and q-bio.NC | (2306.00528v1)

Abstract: The brain is likely the most complex organ, given the variety of functions it controls, the number of cells it comprises, and their corresponding diversity. Studying and identifying neurons, the brain's primary building blocks, is a crucial milestone and essential for understanding brain function in health and disease. Recent developments in machine learning have provided advanced abilities for classifying neurons. However, these methods remain black boxes with no explainability and reasoning. This paper aims to provide a robust and explainable deep-learning framework to classify neurons based on their electrophysiological activity. Our analysis is performed on data provided by the Allen Cell Types database containing a survey of biological features derived from single-cell recordings of mice and humans. First, we classify neuronal cell types of mice data to identify excitatory and inhibitory neurons. Then, neurons are categorized to their broad types in humans using domain adaptation from mice data. Lastly, neurons are classified into sub-types based on transgenic mouse lines using deep neural networks in an explainable fashion. We show state-of-the-art results in a dendrite-type classification of excitatory vs. inhibitory neurons and transgenic mouse lines classification. The model is also inherently interpretable, revealing the correlations between neuronal types and their electrophysiological properties.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.