Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

S$^2$ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for Scribble-supervised Polyp Segmentation (2306.00451v1)

Published 1 Jun 2023 in eess.IV and cs.CV

Abstract: Fully-supervised polyp segmentation has accomplished significant triumphs over the years in advancing the early diagnosis of colorectal cancer. However, label-efficient solutions from weak supervision like scribbles are rarely explored yet primarily meaningful and demanding in medical practice due to the expensiveness and scarcity of densely-annotated polyp data. Besides, various deployment issues, including data shifts and corruption, put forward further requests for model generalization and robustness. To address these concerns, we design a framework of Spatial-Spectral Dual-branch Mutual Teaching and Entropy-guided Pseudo Label Ensemble Learning (S$2$ME). Concretely, for the first time in weakly-supervised medical image segmentation, we promote the dual-branch co-teaching framework by leveraging the intrinsic complementarity of features extracted from the spatial and spectral domains and encouraging cross-space consistency through collaborative optimization. Furthermore, to produce reliable mixed pseudo labels, which enhance the effectiveness of ensemble learning, we introduce a novel adaptive pixel-wise fusion technique based on the entropy guidance from the spatial and spectral branches. Our strategy efficiently mitigates the deleterious effects of uncertainty and noise present in pseudo labels and surpasses previous alternatives in terms of efficacy. Ultimately, we formulate a holistic optimization objective to learn from the hybrid supervision of scribbles and pseudo labels. Extensive experiments and evaluation on four public datasets demonstrate the superiority of our method regarding in-distribution accuracy, out-of-distribution generalization, and robustness, highlighting its promising clinical significance. Our code is available at https://github.com/lofrienger/S2ME.

Citations (10)

Summary

We haven't generated a summary for this paper yet.