Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Hairy Black Holes by Spontaneous Symmetry Breaking (2305.19814v3)

Published 31 May 2023 in hep-th and gr-qc

Abstract: We study hairy black hole solutions in Einstein(--Maxwell)--scalar--Gauss--Bonnet theory. The scalar coupling function includes quadratic and quartic terms, so the gravitational action has a U(1) symmetry. We argued that when the effective mass of the scalar field is at the critical value, the non-hairy black holes transform into hairy black holes in a symmetry-broken vacuum via spontaneous symmetry breaking. These hairy black holes are stable under scalar perturbations, and the Goldstone bosons are trivial. Moreover, we found that the spontaneous symmetry breaking associated with local U(1) is unlikely to occur in this theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016.
  2. D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, “A direct empirical proof of the existence of dark matter,” Astrophys. J. Lett., vol. 648, pp. L109–L113, 2006.
  3. A. D. Linde, “Chaotic Inflation,” Phys. Lett. B, vol. 129, pp. 177–181, 1983.
  4. A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,” Phys. Lett. B, vol. 91, pp. 99–102, 1980.
  5. D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys., vol. 12, pp. 498–501, 1971.
  6. T. Kobayashi, M. Yamaguchi, and J. Yokoyama, “Generalized G-inflation: Inflation with the most general second-order field equations,” Prog. Theor. Phys., vol. 126, pp. 511–529, 2011.
  7. E. J. Copeland, A. Padilla, and P. M. Saffin, “The cosmology of the Fab-Four,” JCAP, vol. 12, p. 026, 2012.
  8. E. Babichev, W. T. Emond, and S. Ramazanov, “Shrouded black holes in Einstein-Gauss-Bonnet gravity,” Phys. Rev. D, vol. 106, no. 6, p. 063524, 2022.
  9. P. Dorlis, N. E. Mavromatos, and S.-N. Vlachos, “Bypassing Bekenstein’s no-scalar-hair theorem without violating the energy conditions,” 5 2023.
  10. G. Antoniou, A. Bakopoulos, and P. Kanti, “Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories,” Phys. Rev. Lett., vol. 120, no. 13, p. 131102, 2018.
  11. B.-H. Lee, W. Lee, and D. Ro, “Expanded evasion of the black hole no-hair theorem in dilatonic Einstein-Gauss-Bonnet theory,” Phys. Rev. D, vol. 99, no. 2, p. 024002, 2019.
  12. J. D. Bekenstein, “Transcendence of the law of baryon-number conservation in black-hole physics,” Phys. Rev. Lett., vol. 28, pp. 452–455, Feb 1972.
  13. J. D. Bekenstein, “Novel “no-scalar-hair” theorem for black holes,” Phys. Rev. D, vol. 51, pp. R6608–R6611, Jun 1995.
  14. A. Papageorgiou, C. Park, and M. Park, “Rectifying no-hair theorems in Gauss-Bonnet theory,” Phys. Rev. D, vol. 106, no. 8, p. 084024, 2022.
  15. H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E. Berti, “Spontaneous scalarization of black holes and compact stars from a gauss-bonnet coupling,” Phys. Rev. Lett., vol. 120, p. 131104, Mar 2018.
  16. J. L. Blázquez-Salcedo, D. D. Doneva, J. Kunz, and S. S. Yazadjiev, “Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes,” Phys. Rev. D, vol. 98, no. 8, p. 084011, 2018.
  17. D. D. Doneva and S. S. Yazadjiev, “New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories,” Phys. Rev. Lett., vol. 120, no. 13, p. 131103, 2018.
  18. M. Minamitsuji and T. Ikeda, “Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity,” Phys. Rev. D, vol. 99, no. 4, p. 044017, 2019.
  19. C. F. B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H. O. Silva, and T. P. Sotiriou, “Self-interactions and Spontaneous Black Hole Scalarization,” Phys. Rev. D, vol. 99, no. 10, p. 104041, 2019.
  20. M. Minamitsuji and S. Mukohyama, “Instability of scalarized compact objects in Einstein-scalar-Gauss-Bonnet theories,” Phys. Rev. D, vol. 108, no. 2, p. 024029, 2023.
  21. G. Antoniou, C. F. B. Macedo, R. McManus, and T. P. Sotiriou, “Stable spontaneously-scalarized black holes in generalized scalar-tensor theories,” Phys. Rev. D, vol. 106, no. 2, p. 024029, 2022.
  22. B. Kleihaus, J. Kunz, T. Utermöhlen, and E. Berti, “Quadrupole instability of static scalarized black holes,” Phys. Rev. D, vol. 107, no. 8, p. L081501, 2023.
  23. W. F. Buell and B. A. Shadwick, “Potentials and bound states,” American Journal of Physics, vol. 63, pp. 256–258, 03 1995.
  24. Y. S. Myung and D.-C. Zou, “Stability of scalarized charged black holes in the Einstein–Maxwell–Scalar theory,” Eur. Phys. J. C, vol. 79, no. 8, p. 641, 2019.
  25. B. L. Young-Hwan Hyun and M. Park, “Scalar Field Perturbation of Hairy Black Holes in ESGB theory (in progress),”
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com