Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clarifying Trust of Materials Property Predictions using Neural Networks with Distribution-Specific Uncertainty Quantification (2302.02595v1)

Published 6 Feb 2023 in cs.LG

Abstract: It is critical that ML model predictions be trustworthy for high-throughput catalyst discovery approaches. Uncertainty quantification (UQ) methods allow estimation of the trustworthiness of an ML model, but these methods have not been well explored in the field of heterogeneous catalysis. Herein, we investigate different UQ methods applied to a crystal graph convolutional neural network (CGCNN) to predict adsorption energies of molecules on alloys from the Open Catalyst 2020 (OC20) dataset, the largest existing heterogeneous catalyst dataset. We apply three UQ methods to the adsorption energy predictions, namely k-fold ensembling, Monte Carlo dropout, and evidential regression. The effectiveness of each UQ method is assessed based on accuracy, sharpness, dispersion, calibration, and tightness. Evidential regression is demonstrated to be a powerful approach for rapidly obtaining tunable, competitively trustworthy UQ estimates for heterogeneous catalysis applications when using neural networks. Recalibration of model uncertainties is shown to be essential in practical screening applications of catalysts using uncertainties.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Cameron Gruich (1 paper)
  2. Varun Madhavan (8 papers)
  3. Yixin Wang (103 papers)
  4. Bryan Goldsmith (1 paper)
Citations (9)

Summary

We haven't generated a summary for this paper yet.