Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning with tree tensor networks, CP rank constraints, and tensor dropout (2305.19440v2)

Published 30 May 2023 in cs.LG, cond-mat.str-el, and stat.ML

Abstract: Tensor networks developed in the context of condensed matter physics try to approximate order-$N$ tensors with a reduced number of degrees of freedom that is only polynomial in $N$ and arranged as a network of partially contracted smaller tensors. As we have recently demonstrated in the context of quantum many-body physics, computation costs can be further substantially reduced by imposing constraints on the canonical polyadic (CP) rank of the tensors in such networks [arXiv:2205.15296]. Here, we demonstrate how tree tensor networks (TTN) with CP rank constraints and tensor dropout can be used in machine learning. The approach is found to outperform other tensor-network-based methods in Fashion-MNIST image classification. A low-rank TTN classifier with branching ratio $b=4$ reaches a test set accuracy of 90.3\% with low computation costs. Consisting of mostly linear elements, tensor network classifiers avoid the vanishing gradient problem of deep neural networks. The CP rank constraints have additional advantages: The number of parameters can be decreased and tuned more freely to control overfitting, improve generalization properties, and reduce computation costs. They allow us to employ trees with large branching ratios, substantially improving the representation power.

Citations (5)

Summary

We haven't generated a summary for this paper yet.