Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor Decompositions (2207.07417v3)

Published 15 Jul 2022 in cs.DS and cs.LG

Abstract: We study low rank approximation of tensors, focusing on the tensor train and Tucker decompositions, as well as approximations with tree tensor networks and more general tensor networks. For tensor train decomposition, we give a bicriteria $(1 + \eps)$-approximation algorithm with a small bicriteria rank and $O(q \cdot \nnz(A))$ running time, up to lower order terms, which improves over the additive error algorithm of \cite{huber2017randomized}. We also show how to convert the algorithm of \cite{huber2017randomized} into a relative error algorithm, but their algorithm necessarily has a running time of $O(qr2 \cdot \nnz(A)) + n \cdot \poly(qk/\eps)$ when converted to a $(1 + \eps)$-approximation algorithm with bicriteria rank $r$. To the best of our knowledge, our work is the first to achieve polynomial time relative error approximation for tensor train decomposition. Our key technique is a method for obtaining subspace embeddings with a number of rows polynomial in $q$ for a matrix which is the flattening of a tensor train of $q$ tensors. We extend our algorithm to tree tensor networks. In addition, we extend our algorithm to tensor networks with arbitrary graphs (which we refer to as general tensor networks), by using a result of \cite{ms08_simulating_quantum_tensor_contraction} and showing that a general tensor network of rank $k$ can be contracted to a binary tree network of rank $k{O(\deg(G)\tw(G))}$, allowing us to reduce to the case of tree tensor networks. Finally, we give new fixed-parameter tractable algorithms for the tensor train, Tucker, and CP decompositions, which are simpler than those of \cite{swz19_tensor_low_rank} since they do not make use of polynomial system solvers. Our technique of Gaussian subspace embeddings with exactly $k$ rows (and thus exponentially small success probability) may be of independent interest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Arvind V. Mahankali (4 papers)
  2. David P. Woodruff (206 papers)
  3. Ziyu Zhang (35 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.