Attractor-repeller collision and the heterodimensional dynamics (2305.18172v1)
Abstract: We study the heterodimensional dynamics in a simple map on a three-dimensional torus. This map consists of a two-dimensional driving Anosov map and a one-dimensional driven M\"obius map, and demonstrates the collision of a chaotic attractor with a chaotic repeller if parameters are varied. We explore this collision by following tangent bifurcations of the periodic orbits, and establish a regime where periodic orbits with different numbers of unstable directions coexist in a chaotic set. For this situation, we construct a heterodimensional cycle connecting these periodic orbits. Furthermore, we discuss properties of the rotation number and of the nontrivial Lyapunov exponent at the collision and in the heterodimensional regime.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.