Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Variational Quantum Algorithms for Gibbs State Preparation (2305.17713v2)

Published 28 May 2023 in quant-ph and cond-mat.stat-mech

Abstract: Preparing the Gibbs state of an interacting quantum many-body system on noisy intermediate-scale quantum (NISQ) devices is a crucial task for exploring the thermodynamic properties in the quantum regime. It encompasses understanding protocols such as thermalization and out-of-equilibrium thermodynamics, as well as sampling from faithfully prepared Gibbs states could pave the way to providing useful resources for quantum algorithms. Variational quantum algorithms (VQAs) show the most promise in effciently preparing Gibbs states, however, there are many different approaches that could be applied to effectively determine and prepare Gibbs states on a NISQ computer. In this paper, we provide a concise overview of the algorithms capable of preparing Gibbs states, including joint Hamiltonian evolution of a system-environment coupling, quantum imaginary time evolution, and modern VQAs utilizing the Helmholtz free energy as a cost function, among others. Furthermore, we perform a benchmark of one of the latest variational Gibbs state preparation algorithms, developed by Consiglio et al. (arXiv:2303.11276), by applying it to the spin 1/2 one-dimensional $XY$ model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)