Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic First-Order Algorithms for Constrained Distributionally Robust Optimization (2305.16584v1)

Published 26 May 2023 in math.OC

Abstract: We consider distributionally robust optimization (DRO) problems, reformulated as distributionally robust feasibility (DRF) problems, with multiple expectation constraints. We propose a generic stochastic first-order meta-algorithm, where the decision variables and uncertain distribution parameters are each updated separately by applying stochastic first-order methods. We then specialize our results to the case of using two specific versions of stochastic mirror descent (SMD): (i) a novel approximate version of SMD to update the decision variables, and (ii) the bandit mirror descent method to update the distribution parameters in the case of $\chi2$-divergence sets. For this specialization, we demonstrate that the total number of iterations is independent of the dimensions of the decision variables and distribution parameters. Moreover, the cost per iteration to update both sets of variables is nearly independent of the dimension of the distribution parameters, allowing for high dimensional ambiguity sets. Furthermore, we show that the total number of iterations of our algorithm has a logarithmic dependence on the number of constraints. Experiments on logistic regression with fairness constraints, personalized parameter selection in a social network, and the multi-item newsvendor problem verify the theoretical results and show the usefulness of the algorithm, in particular when the dimension of the distribution parameters is large.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube