Papers
Topics
Authors
Recent
Search
2000 character limit reached

Greedy Poisson Rejection Sampling

Published 24 May 2023 in cs.IT and math.IT | (2305.15313v5)

Abstract: One-shot channel simulation is a fundamental data compression problem concerned with encoding a single sample from a target distribution $Q$ using a coding distribution $P$ using as few bits as possible on average. Algorithms that solve this problem find applications in neural data compression and differential privacy and can serve as a more efficient alternative to quantization-based methods. Sadly, existing solutions are too slow or have limited applicability, preventing widespread adoption. In this paper, we conclusively solve one-shot channel simulation for one-dimensional problems where the target-proposal density ratio is unimodal by describing an algorithm with optimal runtime. We achieve this by constructing a rejection sampling procedure equivalent to greedily searching over the points of a Poisson process. Hence, we call our algorithm greedy Poisson rejection sampling (GPRS) and analyze the correctness and time complexity of several of its variants. Finally, we empirically verify our theorems, demonstrating that GPRS significantly outperforms the current state-of-the-art method, A* coding. Our code is available at https://github.com/gergely-flamich/greedy-poisson-rejection-sampling.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.