Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Greedy Rejection Sampling (2304.10407v1)

Published 20 Apr 2023 in cs.IT and math.IT

Abstract: We consider channel simulation protocols between two communicating parties, Alice and Bob. First, Alice receives a target distribution $Q$, unknown to Bob. Then, she employs a shared coding distribution $P$ to send the minimum amount of information to Bob so that he can simulate a single sample $X \sim Q$. For discrete distributions, Harsha et al. (2009) developed a well-known channel simulation protocol -- greedy rejection sampling (GRS) -- with a bound of ${D_{KL}[Q \,\Vert\, P] + 2\ln(D_{KL}[Q \,\Vert\, P] + 1) + \mathcal{O}(1)}$ on the expected codelength of the protocol. In this paper, we extend the definition of GRS to general probability spaces and allow it to adapt its proposal distribution after each step. We call this new procedure Adaptive GRS (AGRS) and prove its correctness. Furthermore, we prove the surprising result that the expected runtime of GRS is exactly $\exp(D_\infty[Q \,\Vert\, P])$, where $D_\infty[Q \,\Vert\, P]$ denotes the R\'enyi $\infty$-divergence. We then apply AGRS to Gaussian channel simulation problems. We show that the expected runtime of GRS is infinite when averaged over target distributions and propose a solution that trades off a slight increase in the coding cost for a finite runtime. Finally, we describe a specific instance of AGRS for 1D Gaussian channels inspired by hybrid coding. We conjecture and demonstrate empirically that the runtime of AGRS is $\mathcal{O}(D_{KL}[Q \,\Vert\, P])$ in this case.

Citations (10)

Summary

We haven't generated a summary for this paper yet.