Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

6G Enabled Advanced Transportation Systems (2305.15184v3)

Published 24 May 2023 in cs.IT, cs.NI, cs.SY, eess.SP, eess.SY, and math.IT

Abstract: With the emergence of communication services with stringent requirements such as autonomous driving or on-flight Internet, the sixth-generation (6G) wireless network is envisaged to become an enabling technology for future transportation systems. In this paper, two ways of interactions between 6G networks and transportation are extensively investigated. On one hand, the new usage scenarios and capabilities of 6G over existing cellular networks are firstly highlighted. Then, its potential in seamless and ubiquitous connectivity across the heterogeneous space-air-ground transportation systems is demonstrated, where railways, airplanes, high-altitude platforms and satellites are investigated. On the other hand, we reveal that the introduction of 6G guarantees a more intelligent, efficient and secure transportation system. Specifically, technical analysis on how 6G can empower future transportation is provided, based on the latest research and standardization progresses in localization, integrated sensing and communications, and security. The technical challenges and insights for a road ahead are also summarized for possible inspirations on 6G enabled advanced transportation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (79)
  1. G. Dimitrakopoulos and P. Demestichas, “Intelligent transportation systems,” IEEE Vehicular Technology Magazine, vol. 5, no. 1, pp. 77–84, 2010.
  2. J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-driven intelligent transportation systems: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639, 2011.
  3. A. Sumalee and H. W. Ho, “Smarter and more connected: Future intelligent transportation system,” Iatss Research, vol. 42, no. 2, pp. 67–71, 2018.
  4. G. Dimitrakopoulos and P. Demestichas, “Systems based on cognitive networking principles and management functionality,” IEEE Veh. Technol., vol. 5, pp. 77–84, 2010.
  5. R. Liu, R. Y.-N. Li, M. D. Renzo, and L. Hanzo, “A Vision and An Evolutionary Framework for 6G: Scenarios, Capabilities and Enablers,” 2023. [Online]. Available: https://arxiv.org/abs/2305.13887
  6. R. Liu, H. Lin, H. Lee, F. Chaves, H. Lim, and J. Sköld, “Beginning of the journey toward 6g: Vision and framework,” IEEE Communications Magazine, vol. 61, no. 10, pp. 8–9, 2023.
  7. K. Guan, D. He, B. Ai, Y. Chen, C. Han, B. Peng, Z. Zhong, and T. Kürner, “Channel characterization and capacity analysis for thz communication enabled smart rail mobility,” IEEE Transactions on Vehicular Technology, vol. 70, no. 5, pp. 4065–4080, 2021.
  8. K. Guan, G. Li, T. Kürner, A. F. Molisch, B. Peng, R. He, B. Hui, J. Kim, and Z. Zhong, “On millimeter wave and thz mobile radio channel for smart rail mobility,” IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 5658–5674, 2017.
  9. K. Guan, J. Moreno, B. Ai, C. Briso-Rodriguez, B. Peng, D. He, A. Hrovat, Z. Zhong, and T. Kurner, “5g channel models for railway use cases at mmwave band and the path towards terahertz,” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 3, pp. 146–155, 2021.
  10. M. Jian and R. Liu, “Baseband signal processing for terahertz: Waveform design, modulation and coding,” in 2021 International Wireless Communications and Mobile Computing (IWCMC), 2021, pp. 1710–1715.
  11. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, 2019.
  12. R. Liu, Q. Wu, M. Di Renzo, and Y. Yuan, “A path to smart radio environments: An industrial viewpoint on reconfigurable intelligent surfaces,” IEEE Wireless Communications, vol. 29, no. 1, pp. 202–208, 2022.
  13. R. Liu, J. Dou, P. Li, J. Wu, and Y. Cui, “Simulation and field trial results of reconfigurable intelligent surfaces in 5g networks,” IEEE Access, vol. 10, pp. 122 786–122 795, 2022.
  14. B. Ai, A. F. Molisch, M. Rupp, and Z.-D. Zhong, “5g key technologies for smart railways,” Proceedings of the IEEE, vol. 108, no. 6, pp. 856–893, 2020.
  15. J. Zhang, H. Liu, Q. Wu, Y. Jin, Y. Chen, B. Ai, S. Jin, and T. J. Cui, “Ris-aided next-generation high-speed train communications: Challenges, solutions, and future directions,” IEEE Wireless Communications, vol. 28, no. 6, pp. 145–151, 2021.
  16. T. Kim, K. Ko, I. Hwang, D. Hong, S. Choi, and H. Wang, “Rsrp-based doppler shift estimator using machine learning in high-speed train systems,” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 371–380, 2021.
  17. K. Guan, B. Peng, D. He, J. M. Eckhardt, S. Rey, B. Ai, Z. Zhong, and T. Kürner, “Measurement, simulation, and characterization of train-to-infrastructure inside-station channel at the terahertz band,” IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 3, pp. 291–306, 2019.
  18. Y. Ma, G. Ma, B. Ai, D. Fei, N. Wang, Z. Zhong, and J. Yuan, “Characteristics of channel spreading function and performance of otfs in high-speed railway,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  19. Y. Ma, G. Ma, N. Wang, Z. Zhong, and B. Ai, “Otfs-tsma for massive internet of things in high-speed railway,” IEEE Transactions on Wireless Communications, vol. 21, no. 1, pp. 519–531, 2022.
  20. C. Liang, J. Xu, W. Zhao, and L. Li, “Designing polarization-adjusted convolutional (pac) codes with rate matching,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2023, pp. 1–5.
  21. Z. Zhao, C. Liang, J. Xu, L. Li, and R. Liu, “Regular apsk constellation design for beyond 5g,” in 2022 International Wireless Communications and Mobile Computing (IWCMC), 2022, pp. 713–718.
  22. A. Malvern, “Improvements to VHF air-to-ground communication,” in IEE Colloquium on Air-To-Ground Communications, 1997, pp. 3/1–3/7.
  23. Y. Han, “5G ATG Ushers in a New Era of 5G Air High-Speed Internet,” ZTE Technologies, vol. 23, no. 3, pp. 35–37, 2021.
  24. J. Chen, K. Long, J. Liu, Q. Liu, and Y. Zhao, “Adaptive beamforming methods based on air-to-ground communication scenarios,” in 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), vol. 6, 2022, pp. 1552–1556.
  25. Y. Koda, M. Shinzaki, K. Yamamoto, T. Nishio, M. Morikura, Y. Shirato, D. Uchida, and N. Kita, “Millimeter wave communications on overhead messenger wire: Deep reinforcement learning-based predictive beam tracking,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 4, pp. 1216–1232, 2021.
  26. X. Zhu and C. Jiang, “Integrated satellite-terrestrial networks toward 6G: Architectures, applications, and challenges,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 437–461, 2022.
  27. S. C. Arum, D. Grace, and P. D. Mitchell, “A review of wireless communication using high-altitude platforms for extended coverage and capacity,” Computer Communications, vol. 157, pp. 232–256, 2020.
  28. Z. Xiao, T. Mao, Z. Han, and X.-G. Xia, “Near space communications: A new regime in space-air-ground integrated networks,” IEEE Wireless Communications, vol. 29, no. 6, pp. 38–45, 2022.
  29. D. Zhou, S. Gao, R. Liu, F. Gao, and M. Guizani, “Overview of development and regulatory aspects of high altitude platform system,” Intelligent and Converged Networks, vol. 1, no. 1, pp. 58–78, 2020.
  30. Z. Lian, L. Jiang, C. He, and D. He, “A non-stationary 3-D wideband GBSM for HAP-MIMO communication systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1128–1139, 2019.
  31. E. T. Michailidis, N. Nomikos, P. Trakadas, and A. G. Kanatas, “Three-dimensional modeling of mmWave doubly massive MIMO aerial fading channels,” IEEE Transactions on Vehicular Technology, vol. 69, no. 2, pp. 1190–1202, 2020.
  32. J. Zhao, Q. Wang, Y. Li, J. Zhou, and W. Zhou, “Ka-band based channel modeling and analysis in high altitude platform(HAP) system,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1–5.
  33. H. Elayan, O. Amin, B. Shihada, R. M. Shubair, and M.-S. Alouini, “Terahertz band: The last piece of rf spectrum puzzle for communication systems,” IEEE Open Journal of the Communications Society, vol. 1, pp. 1–32, 2020.
  34. T. Mao, L. Zhang, Z. Xiao, Z. Han, and X.-G. Xia, “Terahertz-band near-space communications: From a physical-layer perspective,” IEEE Communications Magazine, pp. 1–7, 2022.
  35. J. Xu, M. A. Kishk, and M.-S. Alouini, “Space-air-ground-sea integrated networks: Modeling and coverage analysis [early access:] https://ieeexplore.ieee.org/document/10040542,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  36. S. N. Rao, D. Raj, V. Parthasarathy, S. Aiswarya, M. V. Ramesh, and V. Rangan, “A novel solution for high speed internet over the oceans,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2018, pp. 906–912.
  37. K. Yang, T. Roste, F. Bekkadal, and T. Ekman, “Experimental multipath delay profile of mobile radio channels over sea at 2 ghz,” in 2012 Loughborough Antennas & Propagation Conference (LAPC), 2012, pp. 1–4.
  38. Y. Yasuda, M. Ohashi, F. Sugaya, M. Yasunaga, and Y. Karasawa, “Field experiment on digital maritime and aeronautical satellite communication systems using ETS-V,” in IEEE International Conference on Communications, World Prosperity Through Communications,, 1989, pp. 204–210 vol.1.
  39. S. Li, J. Yuan, W. Yuan, Z. Wei, B. Bai, and D. W. K. Ng, “Performance analysis of coded OTFS systems over high-mobility channels,” IEEE Transactions on Wireless Communications, vol. 20, no. 9, pp. 6033–6048, 2021.
  40. A. Bemani, G. Cuozzo, N. Ksairi, and M. Kountouris, “Affine frequency division multiplexing for next-generation wireless networks,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS), 2021, pp. 1–6.
  41. X. Lin, S. Rommer, S. Euler, E. A. Yavuz, and R. S. Karlsson, “5g from space: An overview of 3GPP non-terrestrial networks,” IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 147–153, 2021.
  42. 3GPP TS 22.261, “Service requirements for the 5G system; stage 1,” Dec. 2018. [Online]. Available: http://www.3gpp.org/ftp/Specs/archive/22_series/22.261/2282261-g60.zip
  43. 3GPP TR 22.822, “Study on using satellite access in 5G,” Aug. 2018. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3372
  44. 3GPP TR 38.811, “Study on new radio (Nr) to support non-terrestrial networks,” Aug. 2018. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3234
  45. ITU-R M.2460-0, “Key elements for integration of satellite systems into next generation access technologies,” July 2019.
  46. ETSI TR 103 611, “Satellite earth stations and systems (ses); seamless integration of satellite and/or haps (high altitude platform station) systems into 5G and related architecture options,” June 2020. [Online]. Available: https://www.etsi.org/deliver/etsi_tr/103600_103699/103611/01.01.01_60/tr_103611v010101p.pdf
  47. N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal processing magazine, vol. 22, no. 4, pp. 54–69, 2005.
  48. R. Liu, C. Zhang, and J. Song, “Line of sight component identification and positioning in single frequency networks under multipath propagation,” IEEE Transactions on Broadcasting, vol. 65, no. 2, pp. 220–233, 2019.
  49. R. Liu and C. Zhang, “Angle of arrival based positioning method in single frequency networks,” in 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), 2018, pp. 1448–1452.
  50. R. Liu, C. Zhang, and P. Hou, “Tdoa positioning in single frequency networks without transmitter identities,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–5.
  51. L. Taponecco, A. A. D’Amico, and U. Mengali, “Joint toa and aoa estimation for uwb localization applications,” IEEE Transactions on Wireless Communications, vol. 10, no. 7, pp. 2207–2217, 2011.
  52. S. Kim, S. Park, H. Ji, and B. Shim, “Aoa-toa based localization for 5g cell-less communications,” in 2017 23rd Asia-Pacific Conference on Communications (APCC).   IEEE, 2017, pp. 1–6.
  53. Y. Sun, Z.-p. Zhou, S.-l. Tang, X. K. Ding, J. Yin, and Q. Wan, “3d hybrid toa-aoa source localization using an active and a passive station,” in 2016 IEEE 13th international conference on signal processing (ICSP).   IEEE, 2016, pp. 257–260.
  54. D. Kellner, M. Barjenbruch, K. Dietmayer, J. Klappstein, and J. Dickmann, “Instantaneous lateral velocity estimation of a vehicle using doppler radar,” in Proceedings of the 16th International Conference on Information Fusion.   IEEE, 2013, pp. 877–884.
  55. X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing with intelligent reflecting surface: Architecture and performance,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2070–2084, 2022.
  56. M. U. S. Nawaz, M. K. Ehsan, A. Mahmood, S. Mumtaz, A. H. Sodhro, and W. U. Khan, “Efficient resource prediction framework for software-defined heterogeneous radio environmental infrastructures,” Advanced Engineering Informatics, vol. 56, p. 101976, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474034623001040
  57. D. J. Lary, A. H. Alavi, A. H. Gandomi, and A. L. Walker, “Machine learning in geosciences and remote sensing,” Geoscience Frontiers, vol. 7, no. 1, pp. 3–10, 2016.
  58. R. Liu, W. Dai, and C. Zhang, “Multi-target detection by distributed passive radar systems without reference signals,” in 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1–5.
  59. J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1295–1315, 2021.
  60. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Towards dual-functional wireless networks for 6g and beyond,” IEEE journal on selected areas in communications, 2022.
  61. R. Liu, L. Zhang, T. Mao, K. Guan, and Y. Xu, “Integrated sensing and communication for 6g: Motivation, enablers and standardization,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2023, pp. 1–6.
  62. R. Liu, M. Jian, D. Chen, X. Lin, Y. Cheng, W. Cheng, and S. Chen, “Integrated sensing and communication based outdoor multi-target detection, tracking, and localization in practical 5g networks,” Intelligent and Converged Networks, vol. 4, no. 3, pp. 261–272, 2023.
  63. Z. Zhao, R. Liu, and J. Li, “Integrated sensing and communication based breath monitoring using 5g network,” in 2023 International Wireless Communications and Mobile Computing (IWCMC), 2023, pp. 43–47.
  64. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser mimo communications and mimo radar,” IEEE Transactions on Signal Processing, vol. 68, pp. 3929–3944, 2020.
  65. H. Hua, J. Xu, and T. X. Han, “Optimal transmit beamforming for integrated sensing and communication,” IEEE Transactions on Vehicular Technology, pp. 1–16, 2023.
  66. J. Lou, R. Liu, C. Jiang, X. Han, Z. Han, Q. Yang, and Z. Wang, “A unified channel model for both communication and sensing in integrated sensing and communication systems,” in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), 2023, pp. 1–6.
  67. M. Hua, Q. Wu, C. He, S. Ma, and W. Chen, “Joint active and passive beamforming design for irs-aided radar-communication,” IEEE Transactions on Wireless Communications, vol. 22, no. 4, pp. 2278–2294, 2023.
  68. F. Liu, W. Yuan, C. Masouros, and J. Yuan, “Radar-assisted predictive beamforming for vehicular links: Communication served by sensing,” IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp. 7704–7719, 2020.
  69. Z. Du, F. Liu, W. Yuan, C. Masouros, Z. Zhang, S. Xia, and G. Caire, “Integrated sensing and communications for v2i networks: Dynamic predictive beamforming for extended vehicle targets,” IEEE Transactions on Wireless Communications, pp. 1–1, 2022.
  70. S. Darbha, S. Konduri, and P. R. Pagilla, “Benefits of v2v communication for autonomous and connected vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 5, pp. 1954–1963, 2018.
  71. N. A. Zardari, R. Ngah, O. Hayat, and A. H. Sodhro, “Adaptive mobility-aware and reliable routing protocols for healthcare vehicular network,” Mathematical Biosciences and Engineering, vol. 19, no. 7, pp. 7156–7177, 2022.
  72. M. Haroundabadi, D. M. Soleymani, S. Bhadauria, M. Leyh, and E. Roth-Mandutz, “V2x in 3gpp standardization: Sidelink in rel-16 and beyond,” IEEE Wireless Communication Magazine, vol. 1, no. 3-4, pp. 187–197, 2020.
  73. W. Qi, Q. Li, Q. Song, L. Guo, and A. Jamalipour, “Extensive edge intelligence for future vehicular networks in 6g,” IEEE Wireless Communications, vol. 28, no. 4, pp. 128–135, 2021.
  74. G. Chen, Q. Wu, R. Liu, J. Wu, and C. Fang, “Irs aided mec systems with binary offloading: A unified framework for dynamic irs beamforming,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 2, pp. 349–365, 2023.
  75. A. A. Khan, M. Abolhasan, W. Ni, J. Lipman, and A. Jamalipour, “An end-to-end (e2e) network slicing framework for 5g vehicular ad-hoc networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 7, pp. 7103–7112, 2021.
  76. D. Chulerttiyawong and A. Jamalipour, “A blockchain assisted vehicular pseudonym issuance and management system for conditional privacy enhancement,” IEEE Access, vol. 9, pp. 127 305–127 319, 2021.
  77. ——, “Sybil attack detection in internet of flying things-ioft: A machine learning approach,” IEEE Internet of Things Journal, 2023.
  78. R. Liu, G. G. Rozenman, N. K. Kundu, D. Chandra, and D. De, “Towards the industrialisation of quantum key distribution in communication networks: A short survey,” IET Quantum Communication, vol. 3, no. 3, pp. 151–163, 2022. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/qtc2.12044
  79. G. G. Rozenman, N. K. Kundu, R. Liu, L. Zhang, A. Maslennikov, Y. Reches, and H. Y. Youm, “The quantum internet: A synergy of quantum information technologies and 6g networks,” IET Quantum Communication. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/qtc2.12069
Citations (24)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com