Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Auto-encoding for Blind Image Quality Assessment (2305.14684v1)

Published 24 May 2023 in cs.CV and eess.IV

Abstract: Blind image quality assessment (BIQA) is a challenging problem with important real-world applications. Recent efforts attempting to exploit powerful representations by deep neural networks (DNN) are hindered by the lack of subjectively annotated data. This paper presents a novel BIQA method which overcomes this fundamental obstacle. Specifically, we design a pair of collaborative autoencoders (COAE) consisting of a content autoencoder (CAE) and a distortion autoencoder (DAE) that work together to extract content and distortion representations, which are shown to be highly descriptive of image quality. While the CAE follows a standard codec procedure, we introduce the CAE-encoded feature as an extra input to the DAE's decoder for reconstructing distorted images, thus effectively forcing DAE's encoder to extract distortion representations. The self-supervised learning framework allows the COAE including two feature extractors to be trained by almost unlimited amount of data, thus leaving limited samples with annotations to finetune a BIQA model. We will show that the proposed BIQA method achieves state-of-the-art performance and has superior generalization capability over other learning based models. The codes are available at: https://github.com/Macro-Zhou/NRIQA-VISOR/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zehong Zhou (1 paper)
  2. Fei Zhou (115 papers)
  3. Guoping Qiu (61 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.