Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sequential Estimation using Hierarchically Stratified Domains with Latin Hypercube Sampling (2305.13421v2)

Published 22 May 2023 in stat.ME

Abstract: Quantifying the effect of uncertainties in systems where only point evaluations in the stochastic domain but no regularity conditions are available is limited to sampling-based techniques. This work presents an adaptive sequential stratification estimation method that uses Latin Hypercube Sampling within each stratum. The adaptation is achieved through a sequential hierarchical refinement of the stratification, guided by previous estimators using local (i.e., stratum-dependent) variability indicators based on generalized polynomial chaos expansions and Sobol decompositions. For a given total number of samples $N$, the corresponding hierarchically constructed sequence of Stratified Sampling estimators combined with Latin Hypercube sampling is adequately averaged to provide a final estimator with reduced variance. Numerical experiments illustrate the procedure's efficiency, indicating that it can offer a variance decay proportional to $N{-2}$ in some cases.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.