Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity (2305.13150v3)

Published 22 May 2023 in cond-mat.mes-hall and quant-ph

Abstract: Spin qubits defined by valence band hole states comprise an attractive candidate for quantum information processing due to their inherent coupling to electric fields enabling fast and scalable qubit control. In particular, heavy holes in germanium have shown great promise, with recent demonstrations of fast and high-fidelity qubit operations. However, the mechanisms and anisotropies that underlie qubit driving and decoherence are still mostly unclear. Here, we report on the highly anisotropic heavy-hole $g$-tensor and its dependence on electric fields, allowing us to relate both qubit driving and decoherence to an electric modulation of the $g$-tensor. We also confirm the predicted Ising-type hyperfine interaction but show that qubit coherence is ultimately limited by $1/f$ charge noise. Finally, we operate the qubit at low magnetic field and measure a dephasing time of $T_2*=9.2$ ${\mu}$s, while maintaining a single-qubit gate fidelity of 99.94 %, that remains well above 99 % at an operation temperature T>1 K. This understanding of qubit driving and decoherence mechanisms are key for the design and operation of scalable and highly coherent hole qubit arrays.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Resilient quantum computation: error models and thresholds. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 365–384 (1998).
  2. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences 114, 7555–7560 (2017).
  3. Quantum computation with quantum dots. Physical Review A 57, 120–126 (1998).
  4. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nature Nanotechnology 9, 981–985 (2014).
  5. Lawrie, W. I. L. et al. Simultaneous driving of semiconductor spin qubits at the fault-tolerant threshold, Nature Communications 14, 3617 (2023).
  6. Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Science Advances 8, eabn5130 (2022).
  7. Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).
  8. Tanttu, T. et al. Stability of high-fidelity two-qubit operations in silicon, Preprint at: http://arxiv.org/abs/2303.04090 (2023).
  9. Harvey-Collard, P. et al. High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism. Physical Review X 8, 021046 (2018).
  10. Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).
  11. Philips, S. G. J. et al. Universal control of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).
  12. van Riggelen, F. et al. Phase flip code with semiconductor spin qubits. npj Quantum Information 8, 1–7 (2022).
  13. Quantum error correction with silicon spin qubits. Nature 608, 682–686 (2022).
  14. Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nature Electronics 5, 184–190 (2022).
  15. Scappucci, G. et al. The germanium quantum information route. Nature Reviews Materials 1–18 (2020).
  16. Fast two-qubit logic with holes in germanium. Nature 577, 487–491 (2020).
  17. Jirovec, D. et al. A singlet-triplet hole spin qubit in planar Ge. Nature Materials 1–7 (2021).
  18. Li, R. et al. A crossbar network for silicon quantum dot qubits. Science Advances 4, eaar3960 (2018).
  19. Borsoi, F. et al. Shared control of a 16 semiconductor quantum dot crossbar array.. Nature Nanotechnology (2023).
  20. Sammak, A. et al. Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology. Advanced Functional Materials 29, 1807613 (2019).
  21. Lodari, M. et al. Low percolation density and charge noise with holes in germanium. Materials for Quantum Technology 1, 011002 (2021).
  22. Lawrie, W. I. L. et al. Quantum dot arrays in silicon and germanium. Applied Physics Letters 116, 080501 (2020).
  23. Winkler, R. Spin-orbit coupling effects in two-dimensional electron and hole systems (Springer, Berlin, Heidelberg, 2003).
  24. Piot, N. et al. A single hole spin with enhanced coherence in natural silicon. Nature Nanotechnology 17, 1072–1077 (2022).
  25. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Physical Review B 78, 155329 (2008).
  26. Jirovec, D. et al. Dynamics of Hole Singlet-Triplet Qubits with Large g𝑔gitalic_g-Factor Differences. Physical Review L 128, 126803 (2022).
  27. Zhang, T. et al. Anisotropic g𝑔gitalic_g-Factor and Spin–Orbit Field in a Germanium Hut Wire Double Quantum Dot. Nano Letters 21, 3835–3842 (2021).
  28. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotechnology 13, 102–106 (2018).
  29. Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power. Physical Review B 104, 115425 (2021).
  30. Modelling of planar germanium hole qubits in electric and magnetic fields, Preprint at: http://arxiv.org/abs/2208.04795 (2022).
  31. Wang, Z. et al. Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits. npj Quantum Information 7, 1–8 (2021).
  32. Hole spin driving by strain-induced spin-orbit interactions. Physical Review Letters 131, 097002 (2023).
  33. Hole spin manipulation in inhomogeneous and nonseparable electric fields. Physical Review B 106, 235426 (2022).
  34. Bedell, S. W. et al. Low-Temperature Growth of Strained Germanium Quantum Wells for High Mobility Applications. ECS Transactions 98, 215 (2020).
  35. Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System. Science 297, 1313–1317 (2002).
  36. Spin orientation of holes in quantum wells. Semiconductor Science and Technology 23, 114017 (2008).
  37. Corley-Wiciak, C. et al. Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device. ACS Applied Materials & Interfaces 15, 3119–3130 (2023).
  38. Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science (New York, N.Y.) 299, 1201–1204 (2003).
  39. Crippa, A. et al. Electrical Spin Driving by g-Matrix Modulation in Spin-Orbit Qubits. Physical Review Letters 120, 137702 (2018).
  40. How to enhance dephasing time in superconducting qubits. Physical Review B 77, 174509 (2008).
  41. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μ𝜇\muitalic_μs. Nature Physics 7, 109–113 (2011).
  42. Liles, S. D. et al. Electrical control of the g-tensor of a single hole in a silicon MOS quantum dot. Physical Review B 104, 235303 (2021).
  43. Electron Spin Dephasing due to Hyperfine Interactions with a Nuclear Spin Bath. Physical Review Letters 102, 057601 (2009).
  44. Chekhovich, E. A. et al. Nuclear spin effects in semiconductor quantum dots. Nature Materials 12, 494–504 (2013).
  45. Pure quantum dephasing of a solid-state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-mediated interactions. Physical Review B 79, 245314 (2009).
  46. Lawrie, W. I. L. Spin Qubits in Silicon and Germanium. Ph.D. thesis, Technical University of Delft, Delft (2022).
  47. Philippopoulos, P. Hyperfine and spin-orbit interactions in semiconductor nanostructures. Ph.D. thesis, McGill University, Montreal (2020).
  48. Uhrig, G. S. Keeping a Quantum Bit Alive by Optimized π𝜋\piitalic_π-Pulse Sequences. Physical Review Letters 98, 100504 (2007).
  49. Prechtel, J. H. et al. Decoupling a hole spin qubit from the nuclear spins. Nature Materials 15, 981–986 (2016).
  50. 7373{}^{73}start_FLOATSUPERSCRIPT 73 end_FLOATSUPERSCRIPTGe Nuclear Magnetic Resonance Studies. Zeitschrift für Naturforschung A 26, 1384–1389 (1971).
  51. Lodari, M. et al. Lightly strained germanium quantum wells with hole mobility exceeding one million. Applied Physics Letters 120, 122104 (2022).
  52. Itoh, K. et al. High purity isotopically enriched 7070{}^{70}start_FLOATSUPERSCRIPT 70 end_FLOATSUPERSCRIPTGe and 7474{}^{74}start_FLOATSUPERSCRIPT 74 end_FLOATSUPERSCRIPTGe single crystals: Isotope separation, growth, and properties. Journal of Materials Research 8, 1341–1347 (1993).
  53. Hensgens, T. et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 548, 70–73 (2017).
  54. Pauli spin blockade in the presence of strong spin-orbit coupling. Physical Review B 80, 041301 (2009).
  55. Seedhouse, A. E. et al. Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control. PRX Quantum 2, 010303 (2021).
  56. Uhrig, G. S. Exact results on dynamical decoupling by π𝜋\piitalic_π pulses in quantum information processes. New Journal of Physics 10, 083024 (2008).
  57. Dynamical decoupling sequence construction as a filter-design problem. Journal of Physics B: Atomic, Molecular and Optical Physics 44, 154002 (2011).
  58. Nakajima, T. et al. Coherence of a Driven Electron Spin Qubit Actively Decoupled from Quasistatic Noise. Physical Review X 10, 011060 (2020).
  59. First-principles hyperfine tensors for electrons and holes in GaAs and silicon. Physical Review B 101, 115302 (2020).
  60. Reed, M. et al. Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation. Physical Review Letters 116, 110402 (2016).
  61. Martins, F. et al. Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. Physical Review Letters 116, 116801 (2016).
Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.