Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extrapolating Multilingual Understanding Models as Multilingual Generators (2305.13140v1)

Published 22 May 2023 in cs.CL

Abstract: Multilingual understanding models (or encoder-based), pre-trained via masked LLMing, have achieved promising results on many language understanding tasks (e.g., mBERT). However, these non-autoregressive (NAR) models still struggle to generate high-quality texts compared with autoregressive (AR) models. Considering that encoder-based models have the advantage of efficient generation and self-correction abilities, this paper explores methods to empower multilingual understanding models the generation abilities to get a unified model. Specifically, we start from a multilingual encoder (XLM-R) and propose a \textbf{S}emantic-\textbf{G}uided \textbf{A}lignment-then-Denoising (SGA) approach to adapt an encoder to a multilingual generator with a small number of new parameters. Experiments show that the proposed approach is an effective adaption method, outperforming widely-used initialization-based methods with gains of 9.4 BLEU on machine translation, 8.1 Rouge-L on question generation, and 5.5 METEOR on story generation on XLM-R$_{large}$. On the other hand, we observe that XLM-R is still inferior to mBART in supervised settings despite better results on zero-shot settings, indicating that more exploration is required to make understanding models strong generators.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Bohong Wu (11 papers)
  2. Fei Yuan (28 papers)
  3. Hai Zhao (227 papers)
  4. Lei Li (1293 papers)
  5. Jingjing Xu (80 papers)
Citations (2)