Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Feature and Differentiable $ k $-NN Graph Learning using Dirichlet Energy (2305.12396v2)

Published 21 May 2023 in cs.LG

Abstract: Feature selection (FS) plays an important role in machine learning, which extracts important features and accelerates the learning process. In this paper, we propose a deep FS method that simultaneously conducts feature selection and differentiable $ k $-NN graph learning based on the Dirichlet Energy. The Dirichlet Energy identifies important features by measuring their smoothness on the graph structure, and facilitates the learning of a new graph that reflects the inherent structure in new feature subspace. We employ Optimal Transport theory to address the non-differentiability issue of learning $ k $-NN graphs in neural networks, which theoretically makes our method applicable to other graph neural networks for dynamic graph learning. Furthermore, the proposed framework is interpretable, since all modules are designed algorithmically. We validate the effectiveness of our model with extensive experiments on both synthetic and real-world datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.