Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Selection Based on Sparse Neural Network Layer with Normalizing Constraints (2012.06365v2)

Published 11 Dec 2020 in cs.LG, cs.CV, and cs.NE

Abstract: Feature selection is important step in machine learning since it has shown to improve prediction accuracy while depressing the curse of dimensionality of high dimensional data. The neural networks have experienced tremendous success in solving many nonlinear learning problems. Here, we propose new neural-network based feature selection approach that introduces two constrains, the satisfying of which leads to sparse FS layer. We have performed extensive experiments on synthetic and real world data to evaluate performance of the proposed FS. In experiments we focus on the high dimension, low sample size data since those represent the main challenge for feature selection. The results confirm that proposed Feature Selection Based on Sparse Neural Network Layer with Normalizing Constraints (SNEL-FS) is able to select the important features and yields superior performance compared to other conventional FS methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Peter Bugata (1 paper)
  2. Peter Drotar (6 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.