Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

AI-assisted Code Authoring at Scale: Fine-tuning, deploying, and mixed methods evaluation (2305.12050v2)

Published 20 May 2023 in cs.SE and cs.AI

Abstract: Generative LLMs have been shown to effectively power AI-based code authoring tools that can suggest entire statements or blocks of code during code authoring. In this paper we present CodeCompose, an AI-assisted code authoring tool developed and deployed at Meta internally. CodeCompose is based on the InCoder LLM that merges generative capabilities with bi-directionality. We have scaled up CodeCompose to serve tens of thousands of developers at Meta, across 9 programming languages and several coding surfaces. We present our experience in making design decisions about the model and system architecture for CodeCompose that addresses these challenges. To release a LLM model at this scale, we needed to first ensure that it is sufficiently accurate. In a random sample of 20K source code files, depending on the language, we are able to reproduce hidden lines between 40% and 58% of the time, an improvement of 1.4x and 4.1x over a model trained only on public data. We gradually rolled CodeCompose out to developers. At the time of this writing, 16K developers have used it with 8% of their code coming directly from CodeCompose. To triangulate our numerical findings, we conduct a thematic analysis on the feedback from 70 developers. We find that 91.5% of the feedback is positive, with the most common themes being discovering APIs, dealing with boilerplate code, and accelerating coding. Meta continues to integrate this feedback into CodeCompose.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube