Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis (2305.11832v1)

Published 19 May 2023 in stat.ML and cs.LG

Abstract: We propose a new multimodal variational autoencoder that enables to generate from the joint distribution and conditionally to any number of complex modalities. The unimodal posteriors are conditioned on the Deep Canonical Correlation Analysis embeddings which preserve the shared information across modalities leading to more coherent cross-modal generations. Furthermore, we use Normalizing Flows to enrich the unimodal posteriors and achieve more diverse data generation. Finally, we propose to use a Product of Experts for inferring one modality from several others which makes the model scalable to any number of modalities. We demonstrate that our method improves likelihood estimates, diversity of the generations and in particular coherence metrics in the conditional generations on several datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.