Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-Driven Reconstruction of Stochastic Dynamical Equations based on Statistical Moments (2305.10990v2)

Published 18 May 2023 in cond-mat.stat-mech and nlin.AO

Abstract: Stochastic processes are encountered in many contexts, ranging from generation sizes of bacterial colonies and service times in a queueing system to displacements of Brownian particles and frequency fluctuations in an electrical power grid. If such processes are Markov, then their probability distribution is governed by the Kramers-Moyal (KM) equation, a partial differential equation that involves an infinite number of coefficients, which depend on the state variable. The KM coefficients must be evaluated based on measured time series for a data-driven reconstruction of the governing equations for the stochastic dynamics. We present an accurate method of computing the KM coefficients, which relies on computing the coefficients' conditional moments based on the statistical moments of the time series. The method's advantages over state-of-the-art approaches are demonstrated by investigating prototypical stochastic processes with well-known properties.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.