Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Determination of optimal experimental conditions for accurate 3D reconstruction of the magnetization vector via XMCD-PEEM (2305.09590v4)

Published 16 May 2023 in cond-mat.mes-hall

Abstract: In this work we present a detailed analysis on the performance of X-ray magnetic circular dichroism photo-emission electron microscopy (XMCD-PEEM) as a tool for vector reconstruction of the magnetization. For this, we choose 360${\circ}$ domain wall ring structures which form in a synthetic antiferromagnet as our model to conduct the quantitative analysis. We assess how the quality of the results is affected depending on the number of projections that are involved in the reconstruction process, as well as their angular distribution. For this we develop a self-consistent error metric, which indicates that the main factor of improvement comes from selecting the projections evenly spread out in space, over having a larger number of these spanning a smaller angular range. This work thus poses XMCD-PEEM as a powerful tool for vector imaging of complex 3D magnetic structures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A. Fernández-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer,  and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nature communications 8, 15756 (2017).
  2. E. Y. Vedmedenko, R. K. Kawakami, D. D. Sheka, P. Gambardella, A. Kirilyuk, A. Hirohata, C. Binek, O. Chubykalo-Fesenko, S. Sanvito, B. J. Kirby, et al., “The 2020 magnetism roadmap,” Journal of Physics D: Applied Physics 53, 453001 (2020).
  3. D. Sander, S. O. Valenzuela, D. Makarov, C. Marrows, E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P. Pirro, et al., “The 2017 magnetism roadmap,” Journal of Physics D: Applied Physics 50, 363001 (2017).
  4. O. Kazakova, R. Puttock, C. Barton, H. Corte-León, M. Jaafar, V. Neu,  and A. Asenjo, “Frontiers of magnetic force microscopy,” Journal of applied Physics 125, 060901 (2019).
  5. C. Phatak, A. Petford-Long,  and M. De Graef, “Recent advances in lorentz microscopy,” Current Opinion in Solid State and Materials Science 20, 107–114 (2016).
  6. K. Fallon, S. McVitie, W. Legrand, F. Ajejas, D. Maccariello, S. Collin, V. Cros,  and N. Reyren, “Quantitative imaging of hybrid chiral spin textures in magnetic multilayer systems by lorentz microscopy,” Physical Review B 100, 214431 (2019).
  7. J. M. Thomas, E. T. Simpson, T. Kasama,  and R. E. Dunin-Borkowski, “Electron holography for the study of magnetic nanomaterials,” Accounts of chemical research 41, 665–674 (2008).
  8. J. Lucassen, F. Kloodt-Twesten, R. Frömter, H. P. Oepen, R. A. Duine, H. J. Swagten, B. Koopmans,  and R. Lavrijsen, “Scanning electron microscopy with polarization analysis for multilayered chiral spin textures,” Applied Physics Letters 111, 132403 (2017).
  9. J. Unguris, “6. scanning electron microscopy with polarization analysis (sempa) and its applications,” Experimental methods in the physical sciences 36, 167–XVI (2001).
  10. N. Rougemaille and A. Schmid, “Magnetic imaging with spin-polarized low-energy electron microscopy,” The European Physical Journal Applied Physics 50, 20101 (2010).
  11. M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, Y. Nakagawa, T. Konomi, A. Mano, N. Yamamoto, M. Kuwahara, M. Yamamoto, et al., “Real time magnetic imaging by spin-polarized low energy electron microscopy with highly spin-polarized and high brightness electron gun,” Applied physics express 3, 026601 (2010).
  12. L. Flajšman, M. Urbánek, V. Křižáková, M. Vaňatka, I. Turčan,  and T. Šikola, “High-resolution fully vectorial scanning kerr magnetometer,” Review of Scientific Instruments 87, 053704 (2016).
  13. I. Soldatov and R. Schäfer, “Selective sensitivity in kerr microscopy,” Review of Scientific Instruments 88, 073701 (2017a).
  14. I. Soldatov and R. Schäfer, “Advanced moke magnetometry in wide-field kerr-microscopy,” Journal of Applied Physics 122, 153906 (2017b).
  15. L. Le Guyader, A. Kleibert, A. F. Rodríguez, S. El Moussaoui, A. Balan, M. Buzzi, J. Raabe,  and F. Nolting, “Studying nanomagnets and magnetic heterostructures with x-ray peem at the swiss light source,” Journal of Electron Spectroscopy and Related Phenomena 185, 371–380 (2012).
  16. P. Fischer, T. Eimüller, G. Schütz, P. Guttmann, G. Schmahl, K. Pruegl,  and G. Bayreuther, “Imaging of magnetic domains by transmission x-ray microscopy,” Journal of Physics D: Applied Physics 31, 649 (1998).
  17. C. Blanco-Roldán, C. Quirós, A. Sorrentino, A. Hierro-Rodríguez, L. M. Álvarez-Prado, R. Valcárcel, M. Duch, N. Torras, J. Esteve, J. I. Martín, et al., “Nanoscale imaging of buried topological defects with quantitative x-ray magnetic microscopy,” Nature communications 6, 8196 (2015).
  18. M. Zimmermann, T. N. G. Meier, F. Dirnberger, A. Kákay, M. Decker, S. Wintz, S. Finizio, E. Josten, J. Raabe, M. Kronseder, et al., “Origin and manipulation of stable vortex ground states in permalloy nanotubes,” Nano letters 18, 2828–2834 (2018).
  19. X. Shi, P. Fischer, V. Neu, D. Elefant, J. Lee, D. Shapiro, M. Farmand, T. Tyliszczak, H.-W. Shiu, S. Marchesini, et al., “Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin smco5 films,” Applied Physics Letters 108, 094103 (2016).
  20. S. Eisebitt, J. Lüning, W. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt,  and J. Stöhr, “Lensless imaging of magnetic nanostructures by x-ray spectro-holography,” Nature 432, 885–888 (2004).
  21. C. Donnelly and V. Scagnoli, “Imaging three-dimensional magnetic systems with x-rays,” Journal of Physics: Condensed Matter 32, 213001 (2020).
  22. A. Hierro-Rodriguez, D. Gürsoy, C. Phatak, C. Quirós, A. Sorrentino, L. M. Álvarez-Prado, M. Vélez, J. I. Martín, J. M. Alameda, E. Pereiro, et al., “3d reconstruction of magnetization from dichroic soft x-ray transmission tomography,” Journal of synchrotron radiation 25, 1144–1152 (2018).
  23. C. Donnelly, S. Gliga, V. Scagnoli, M. Holler, J. Raabe, L. J. Heyderman,  and M. Guizar-Sicairos, “Tomographic reconstruction of a three-dimensional magnetization vector field,” New Journal of Physics 20, 083009 (2018).
  24. A. Hierro-Rodríguez, C. Quirós, A. Sorrentino, L. M. Álvarez-Prado, J. I. Martín, J. M. Alameda, S. McVitie, E. Pereiro, M. Velez,  and S. Ferrer, “Revealing 3d magnetization of thin films with soft x-ray tomography: magnetic singularities and topological charges,” Nature communications 11, 6382 (2020).
  25. C. Donnelly, M. Guizar-Sicairos, V. Scagnoli, S. Gliga, M. Holler, J. Raabe,  and L. J. Heyderman, “Three-dimensional magnetization structures revealed with x-ray vector nanotomography,” Nature 547, 328–331 (2017).
  26. S. Ruiz-Gómez, L. Pérez, A. Mascaraque, A. Quesada, P. Prieto, I. Palacio, L. Martín-García, M. Foerster, L. Aballe,  and J. de la Figuera, “Geometrically defined spin structures in ultrathin fe 3 o 4 with bulk like magnetic properties,” Nanoscale 10, 5566–5573 (2018).
  27. M. Ghidini, F. Maccherozzi, S. S. Dhesi,  and N. D. Mathur, “Xpeem and mfm imaging of ferroic materials,” Advanced Electronic Materials 8, 2200162 (2022).
  28. A. Scholl, H. Ohldag, F. Nolting, J. Stöhr,  and H. A. Padmore, “X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures,” Review of scientific instruments 73, 1362–1366 (2002).
  29. R. Chopdekar, J. Heidler, C. Piamonteze, Y. Takamura, A. Scholl, S. Rusponi, H. Brune, L. Heyderman,  and F. Nolting, “Strain-dependent magnetic configurations in manganite-titanate heterostructures probed with soft x-ray techniques,” The European Physical Journal B 86, 1–7 (2013).
  30. F. P. Chmiel, N. Waterfield Price, R. D. Johnson, A. D. Lamirand, J. Schad, G. van der Laan, D. T. Harris, J. Irwin, M. S. Rzchowski, C.-B. Eom, et al., “Observation of magnetic vortex pairs at room temperature in a planar α𝛼\alphaitalic_α-fe2o3/co heterostructure,” Nature Materials 17, 581–585 (2018).
  31. E. Digernes, S. D. Slöetjes, A. Strømberg, A. D. Bang, F. K. Olsen, E. Arenholz, R. V. Chopdekar, J. K. Grepstad,  and E. Folven, “Direct imaging of long-range ferromagnetic and antiferromagnetic order in a dipolar metamaterial,” Physical Review Research 2, 013222 (2020).
  32. A. Fernández-Pacheco, E. Vedmedenko, F. Ummelen, R. Mansell, D. Petit,  and R. P. Cowburn, “Symmetry-breaking interlayer dzyaloshinskii–moriya interactions in synthetic antiferromagnets,” Nature materials 18, 679–684 (2019).
  33. M. A. C. Sandoval, A. Hierro-Rodríguez, S. Ruiz-Gómez, L. Skoric, C. Donnelly, M. A. Niño, E. Y. Vedmedenko, D. McGrouther, S. McVitie, S. Flewett, N. Jaouen, M. Foerster,  and A. Fernández-Pacheco, “Observation and formation mechanism of 360 domain wall rings in synthetic anti-ferromagnets with interlayer chiral interactions,”  (2023), arXiv:2305.07327 [cond-mat.mes-hall] .
  34. L. Aballe, M. Foerster, E. Pellegrin, J. Nicolas,  and S. Ferrer, “The alba spectroscopic leem-peem experimental station: layout and performance,” Journal of synchrotron radiation 22, 745–752 (2015).
  35. M. Foerster, J. Prat, V. Massana, N. Gonzalez, A. Fontsere, B. Molas, O. Matilla, E. Pellegrin,  and L. Aballe, “Custom sample environments at the alba xpeem,” Ultramicroscopy 171, 63–69 (2016).
  36. J. Stöhr and H. C. Siegmann, “Magnetism,” Solid-State Sciences. Springer, Berlin, Heidelberg 5, 236 (2006).
  37. S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart,  and T. Yu, “scikit-image: image processing in python,” PeerJ 2, e453 (2014).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com