Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Optimal Rate for the Convergence Problem in Mean Field Control (2305.08423v1)

Published 15 May 2023 in math.OC, math.AP, and math.PR

Abstract: The goal of this work is to obtain optimal rates for the convergence problem in mean field control. Our analysis covers cases where the solutions to the limiting problem may not be unique nor stable. Equivalently the value function of the limiting problem might not be differentiable on the entire space. Our main result is then to derive sharp rates of convergence in two distinct regimes. When the data is sufficiently regular, we obtain rates proportional to $N{-1/2}$, with $N$ being the number of particles. When the data is merely Lipschitz and semi-concave with respect to the first Wasserstein distance, we obtain rates proportional to $N{-2/(3d+6)}$. Noticeably, the exponent $2/(3d+6)$ is close to $1/d$, which is the optimal rate of convergence for uncontrolled particle systems driven by data with a similar regularity. The key argument in our approach consists in mollifying the value function of the limiting problem in order to produce functions that are almost classical sub-solutions to the limiting Hamilton-Jacobi equation (which is a PDE set on the space of probability measures). These sub-solutions can be projected onto finite dimensional spaces and then compared with the value functions associated with the particle systems. In the end, this comparison is used to prove the most demanding bound in the estimates. The key challenge therein is thus to exhibit an appropriate form of mollification. We do so by employing sup-convolution within a convenient functional Hilbert space. To make the whole easier, we limit ourselves to the periodic setting. We also provide some examples to show that our results are sharp up to some extent.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.