Two-body problem in theories with kinetic screening (2305.07725v2)
Abstract: New light scalar degrees of freedom may alleviate the dark matter and dark energy problems, but if coupled to matter, they generally mediate a fifth force. In order for this fifth force to be consistent with existing constraints, it must be suppressed close to matter sources, e.g. through a non-linear screening mechanism. In this work, we investigate the non-relativistic two-body problem in shift-symmetric scalar-tensor theories that exhibit kinetic screening ($k$-mouflage), both numerically and analytically. We develop an approximate scheme, based on a Hodge-Helmholtz decomposition of the Noether current associated to the shift symmetry, allowing for a qualitative insight into the dynamics and yielding results in good agreement with the numerical ones in most of the parameter space. We apply the formalism to polynomial $k$-essence and to Dirac-Born-Infeld (DBI) type theories, as well as to theories that develop ``anti-screening''. In the deep nonlinear regime, we find that the fifth force is screened slightly more efficiently in equal-mass systems than in extreme mass-ratio ones. However, we find that systems with comparable masses also exhibit regions where the screening is ineffective. These descreened spheroidal regions (bubbles) could in principle be probed in the solar system with sufficiently precise space accelerometers.
- C. M. Will, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
- P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A14 (2016), arXiv:1502.01590 [astro-ph.CO] .
- M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014).
- S. Deser, Gen. Rel. Grav. 1, 9 (1970), arXiv:gr-qc/0411023 .
- S. Deser, Gen. Rel. Grav. 42, 641 (2010), arXiv:0910.2975 [gr-qc] .
- J. F. Donoghue, (2022), arXiv:2211.09902 [hep-th] .
- A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998), arXiv:astro-ph/9805201 .
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- P. Brax, Rept. Prog. Phys. 81, 016902 (2018).
- P. J. E. Peebles, Astrophys. J. Lett. 263, L1 (1982).
- G. Bertone and D. Hooper, Rev. Mod. Phys. 90, 045002 (2018), arXiv:1605.04909 [astro-ph.CO] .
- G. Bertone and T. Tait, M. P., Nature 562, 51 (2018), arXiv:1810.01668 [astro-ph.CO] .
- J. Bekenstein and M. Milgrom, Astrophys. J. 286, 7 (1984).
- B. Famaey and S. McGaugh, Living Rev. Rel. 15, 10 (2012), arXiv:1112.3960 [astro-ph.CO] .
- J. D. Bekenstein, Phys. Rev. D 70, 083509 (2004), [Erratum: Phys.Rev.D 71, 069901 (2005)], arXiv:astro-ph/0403694 .
- L. Blanchet and S. Marsat, Phys. Rev. D 84, 044056 (2011), arXiv:1107.5264 [gr-qc] .
- M. Bonetti and E. Barausse, Phys. Rev. D 91, 084053 (2015), [Erratum: Phys.Rev.D 93, 029901 (2016)], arXiv:1502.05554 [gr-qc] .
- P. M. Chesler and A. Loeb, Phys. Rev. Lett. 119, 031102 (2017), arXiv:1704.05116 [astro-ph.HE] .
- J. M. Ezquiaga and M. Zumalacárregui, Phys. Rev. Lett. 119, 251304 (2017), arXiv:1710.05901 [astro-ph.CO] .
- S. Dodelson, Int. J. Mod. Phys. D 20, 2749 (2011), arXiv:1112.1320 [astro-ph.CO] .
- L. Berezhiani and J. Khoury, Phys. Rev. D 92, 103510 (2015), arXiv:1507.01019 [astro-ph.CO] .
- G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
- P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 251302 (2017), arXiv:1710.05877 [astro-ph.CO] .
- M. Fierz, Helv. Phys. Acta 29, 128 (1956).
- P. Jordan, Z. Phys. 157, 112 (1959).
- C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
- A. I. Vainshtein, Phys. Lett. B 39, 393 (1972).
- E. Babichev and C. Deffayet, Class. Quant. Grav. 30, 184001 (2013), arXiv:1304.7240 [gr-qc] .
- J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104 (2004), arXiv:astro-ph/0309300 .
- K. Hinterbichler and J. Khoury, Phys. Rev. Lett. 104, 231301 (2010), arXiv:1001.4525 [hep-th] .
- A. Kuntz, Phys. Rev. D 100, 024024 (2019), arXiv:1905.07340 [gr-qc] .
- C. de Rham and R. H. Ribeiro, JCAP 11, 016 (2014), arXiv:1405.5213 [hep-th] .
- P. Brax and P. Valageas, Phys. Rev. D 94, 043529 (2016), arXiv:1607.01129 [astro-ph.CO] .
- L. Hui and A. Nicolis, Phys. Rev. Lett. 105, 231101 (2010), arXiv:1009.2520 [hep-th] .
- C. Armendariz-Picon and E. A. Lim, JCAP 08, 007 (2005), arXiv:astro-ph/0505207 .
- J.-P. Bruneton, Phys. Rev. D 75, 085013 (2007), arXiv:gr-qc/0607055 .
- P. Brax and P. Valageas, Phys. Rev. D 90, 123521 (2014), arXiv:1408.0969 [astro-ph.CO] .
- A. R. Solomon and M. Trodden, JCAP 02, 031 (2018), arXiv:1709.09695 [hep-th] .
- G. Allwright and L. Lehner, Class. Quant. Grav. 36, 084001 (2019), arXiv:1808.07897 [gr-qc] .
- A.-C. Davis and S. Melville, JCAP 11, 012 (2021), arXiv:2107.00010 [gr-qc] .
- R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004), arXiv:astro-ph/0402316 .
- D. Giannakis and W. Hu, Phys. Rev. D 72, 063502 (2005), arXiv:astro-ph/0501423 .
- J. Khoury, Phys. Rev. D 91, 024022 (2015), arXiv:1409.0012 [hep-th] .
- E. Babichev, JHEP 04, 129 (2016), arXiv:1602.00735 [hep-th] .
- M. Shibata and D. Traykova, Phys. Rev. D 107, 044068 (2023), arXiv:2210.12139 [gr-qc] .
- A. D. Kovács and H. S. Reall, Phys. Rev. Lett. 124, 221101 (2020), arXiv:2003.04327 [gr-qc] .
- P. Figueras and T. França, Class. Quant. Grav. 37, 225009 (2020), arXiv:2006.09414 [gr-qc] .
- P. Figueras and T. França, Phys. Rev. D 105, 124004 (2022), arXiv:2112.15529 [gr-qc] .
- W. E. East and F. Pretorius, Phys. Rev. D 106, 104055 (2022), arXiv:2208.09488 [gr-qc] .
- J. L. Ripley, Int. J. Mod. Phys. D 31, 2230017 (2022), arXiv:2207.13074 [gr-qc] .
- C. Burrage and J. Khoury, Phys. Rev. D 90, 024001 (2014), arXiv:1403.6120 [hep-th] .
- J. H. Taylor and J. M. Weisberg, Astrophys. J. 253, 908 (1982).
- E. Berti et al., Class. Quant. Grav. 32, 243001 (2015), arXiv:1501.07274 [gr-qc] .
- M. Kramer et al., Phys. Rev. X 11, 041050 (2021), arXiv:2112.06795 [astro-ph.HE] .
- A. Fienga and O. Minazzoli, (2023), arXiv:2303.01821 [gr-qc] .
- A. Padilla and P. M. Saffin, JHEP 07, 122 (2012), arXiv:1204.1352 [hep-th] .
- M. Nakahara, Geometry, topology and physics (2003).
- M. Milgrom, Astrophys. J. 302, 617 (1986).
- J. Bekenstein and J. Magueijo, Phys. Rev. D 73, 103513 (2006), arXiv:astro-ph/0602266 .
- D. J. Griffiths, Introduction to Electrodynamics (2017).
- S. Mazumder, Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods (Academic Press, 2016).
- J. Magueijo and A. Mozaffari, Phys. Rev. D 85, 043527 (2012), arXiv:1107.1075 [astro-ph.CO] .
- P. Pucci and J. Serrin, The Maximum Principle, Vol. 73 (2007).
- M. Vallisneri et al. (NANOGrav), (2020), 10.3847/1538-4357/ab7b67, arXiv:2001.00595 [astro-ph.HE] .
- L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013), arXiv:1202.1296 [hep-th] .
- T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102 (2014), arXiv:1312.3622 [gr-qc] .
- A. A. H. Graham and R. Jha, Phys. Rev. D 89, 084056 (2014), [Erratum: Phys.Rev.D 92, 069901 (2015)], arXiv:1401.8203 [gr-qc] .
- C. M. Will and H. W. Zaglauer, Astrophys. J. 346, 366 (1989).
- T. Damour and G. Esposito-Farese, Class. Quant. Grav. 9, 2093 (1992).
- L. Bernard, Phys. Rev. D 98, 044004 (2018), arXiv:1802.10201 [gr-qc] .
- M. Armano et al., Phys. Rev. Lett. 116, 231101 (2016).
- W. R. Inc., “Mathematica, Version 13.2,” Champaign, IL, 2022.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.