Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seeing double with a multifunctional reservoir computer (2305.05799v2)

Published 9 May 2023 in math.DS, cs.LG, and cs.NE

Abstract: Multifunctional biological neural networks exploit multistability in order to perform multiple tasks without changing any network properties. Enabling artificial neural networks (ANNs) to obtain certain multistabilities in order to perform several tasks, where each task is related to a particular attractor in the network's state space, naturally has many benefits from a machine learning perspective. Given the association to multistability, in this paper we explore how the relationship between different attractors influences the ability of a reservoir computer (RC), which is a dynamical system in the form of an ANN, to achieve multifunctionality. We construct the `seeing double' problem to systematically study how a RC reconstructs a coexistence of attractors when there is an overlap between them. As the amount of overlap increases, we discover that for multifunctionality to occur, there is a critical dependence on a suitable choice of the spectral radius for the RC's internal network connections. A bifurcation analysis reveals how multifunctionality emerges and is destroyed as the RC enters a chaotic regime that can lead to chaotic itinerancy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. K. Nakajima and I. Fischer, Reservoir Computing (Springer, 2021).
  2. D. Verstraeten, B. Schrauwen, and D. Stroobandt, in Proceedings of the 16th Annual ProRISC Workshop (2005) pp. 454–459.
  3. H. Jaeger, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148 (2001).
  4. W. Maass, T. Natschläger, and H. Markram, Neural computation 14, 2531 (2002).
  5. T. Waegeman, F. wyffels, and B. Schrauwen, IEEE transactions on neural networks and learning systems 23, 1637 (2012).
  6. D. Canaday, A. Pomerance, and D. J. Gauthier, Journal of Physics: Complexity 2, 035025 (2021).
  7. H. Jaeger and H. Haas, Science 304, 78 (2004).
  8. Z. Lu, B. R. Hunt, and E. Ott, Chaos 28, 061104 (2018).
  9. A. Flynn, V. A. Tsachouridis, and A. Amann, Chaos 31, 013125 (2021a).
  10. J. Herteux, The Influence of the Activation Function on Reservoir Computers, Master’s thesis, Ludwig-Maximilians-Universität München (2021).
  11. K. L. Briggman and W. B. Kristan, Journal of Neuroscience 26, 10925 (2006).
  12. I. R. Popescu and W. N. Frost, Journal of Neuroscience 22, 1985 (2002).
  13. G. J. Mpitsos and C. S. Cohan, Journal of neurobiology 17, 517 (1986).
  14. P. A. Getting, Annual review of neuroscience 12, 185 (1989).
  15. P. S. Dickinson, Current opinion in neurobiology 5, 792 (1995).
  16. E. Marder and R. L. Calabrese, Physiological reviews 76, 687 (1996).
  17. K. L. Briggman and W. Kristan Jr, Annu. Rev. Neurosci. 31, 271 (2008).
  18. J. Herteux and C. Räth, Chaos 30, 123142 (2020).
  19. J. Jiang and Y.-C. Lai, Physical Review Research 1, 033056 (2019).
  20. N. Bertschinger and T. Natschläger, Neural computation 16, 1413 (2004).
  21. C. Teuscher, Biosystems , 104693 (2022).
  22. T. L. Carroll, Chaos 30, 121109 (2020).
  23. I. Tsuda, E. Koerner, and H. Shimizu, Progress of Theoretical Physics 78, 51 (1987).
  24. K. Ikeda, K. Otsuka, and K. Matsumoto, Progress of Theoretical Physics Supplement 99, 295 (1989).
  25. K. Kaneko, Physica D: Nonlinear Phenomena 41, 137 (1990).
  26. K. Inoue, K. Nakajima, and Y. Kuniyoshi, Science Advances 6 (2020).
  27. Z. Lu and D. S. Bassett, Chaos 30, 063133 (2020).
  28. C. Grebogi, E. Ott, and J. A. Yorke, Physical Review Letters 50, 935 (1983a).
  29. I. Tsuda, Current opinion in neurobiology 31, 67 (2015).
  30. K. Doya, in [Proceedings] 1992 IEEE International Symposium on Circuits and Systems, Vol. 6 (IEEE, 1992) pp. 2777–2780.
  31. R. D. Beer, Adaptive Behavior 3, 469 (1995).
  32. R. D. Beer, Biological Cybernetics 116, 501 (2022).
  33. A. Ceni, P. Ashwin, and L. Livi, Cognitive Computation 12, 330 (2020).
Citations (5)

Summary

We haven't generated a summary for this paper yet.