Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multifunctionality in a Reservoir Computer (2008.06348v2)

Published 10 Aug 2020 in cs.NE, cs.LG, and math.DS

Abstract: Multifunctionality is a well observed phenomenological feature of biological neural networks and considered to be of fundamental importance to the survival of certain species over time. These multifunctional neural networks are capable of performing more than one task without changing any network connections. In this paper we investigate how this neurological idiosyncrasy can be achieved in an artificial setting with a modern machine learning paradigm known as Reservoir Computing'. A training technique is designed to enable a Reservoir Computer to perform tasks of a multifunctional nature. We explore the critical effects that changes in certain parameters can have on the Reservoir Computers' ability to express multifunctionality. We also expose the existence of severaluntrained attractors'; attractors which dwell within the prediction state space of the Reservoir Computer that were not part of the training. We conduct a bifurcation analysis of these untrained attractors and discuss the implications of our results.

Citations (20)

Summary

We haven't generated a summary for this paper yet.