Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random processes for generating task-dependency graphs (2305.05205v1)

Published 9 May 2023 in cs.DM and math.CO

Abstract: We investigate random processes for generating task-dependency graphs of order $n$ with $m$ edges and a specified number of initial vertices and terminal vertices. In order to do so, we consider two random processes for generating task-dependency graphs that can be combined to accomplish this task. In the $(x, y)$ edge-removal process, we start with a maximally connected task-dependency graph and remove edges uniformly at random as long as they do not cause the number of initial vertices to exceed $x$ or the number of terminal vertices to exceed $y$. In the $(x, y)$ edge-addition process, we start with an empty task-dependency graph and add edges uniformly at random as long as they do not cause the number of initial vertices to be less than $x$ or the number of terminal vertices to be less than $y$. In the $(x, y)$ edge-addition process, we halt if there are exactly $x$ initial vertices and $y$ terminal vertices. For both processes, we determine the values of $x$ and $y$ for which the resulting task-dependency graph is guaranteed to have exactly $x$ initial vertices and $y$ terminal vertices, and we also find the extremal values for the number of edges in the resulting task-dependency graphs as a function of $x$, $y$, and the number of vertices. Furthermore, we asymptotically bound the expected number of edges in the resulting task-dependency graphs. Finally, we define a random process using only edge-addition and edge-removal, and we show that with high probability this random process generates an $(x, y)$ task-dependency graph of order $n$ with $m$ edges.

Summary

We haven't generated a summary for this paper yet.