Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The number of descendants in a random directed acyclic graph (2302.12467v2)

Published 24 Feb 2023 in math.PR, cs.DS, and math.CO

Abstract: We consider a well known model of random directed acyclic graphs of order $n$, obtained by recursively adding vertices, where each new vertex has a fixed outdegree $d\ge2$ and the endpoints of the $d$ edges from it are chosen uniformly at random among previously existing vertices. Our main results concern the number $X$ of vertices that are descendants of $n$. We show that $X/\sqrt n$ converges in distribution; the limit distribution is, up to a constant factor, given by the $d$th root of a Gamma distributed variable. $\Gamma(d/(d-1))$. When $d=2$, the limit distribution can also be described as a chi distribution $\chi(4)$. We also show convergence of moments, and find thus the asymptotics of the mean and higher moments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com