Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatiotemporal Transformer for Stock Movement Prediction (2305.03835v1)

Published 5 May 2023 in cs.LG, cs.AI, and cs.CE

Abstract: Financial markets are an intriguing place that offer investors the potential to gain large profits if timed correctly. Unfortunately, the dynamic, non-linear nature of financial markets makes it extremely hard to predict future price movements. Within the US stock exchange, there are a countless number of factors that play a role in the price of a company's stock, including but not limited to financial statements, social and news sentiment, overall market sentiment, political happenings and trading psychology. Correlating these factors is virtually impossible for a human. Therefore, we propose STST, a novel approach using a Spatiotemporal Transformer-LSTM model for stock movement prediction. Our model obtains accuracies of 63.707 and 56.879 percent against the ACL18 and KDD17 datasets, respectively. In addition, our model was used in simulation to determine its real-life applicability. It obtained a minimum of 10.41% higher profit than the S&P500 stock index, with a minimum annualized return of 31.24%.

Citations (1)

Summary

We haven't generated a summary for this paper yet.