Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact Study of Numerical Discretization Accuracy on Parameter Reconstructions and Model Parameter Distributions (2305.02663v2)

Published 4 May 2023 in physics.comp-ph, physics.optics, and stat.ML

Abstract: In optical nano metrology numerical models are used widely for parameter reconstructions. Using the Bayesian target vector optimization method we fit a finite element numerical model to a Grazing Incidence X-Ray fluorescence data set in order to obtain the geometrical parameters of a nano structured line grating. Gaussian process, stochastic machine learning surrogate models, were trained during the reconstruction and afterwards sampled with a Markov chain Monte Carlo sampler to determine the distribution of the reconstructed model parameters. The numerical discretization parameters of the used finite element model impact the numerical discretization error of the forward model. We investigated the impact of the polynomial order of the finite element ansatz functions on the reconstructed parameters as well as on the model parameter distributions. We showed that such a convergence study allows to determine numerical parameters which allows for efficient and accurate reconstruction results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. A. C. Diebold, “Nanoscale characterization and metrology,” J. Vac. Sci. Technol. A, vol. 31, p. 050804, 2013.
  2. N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron., vol. 1, pp. 532–547, 2018.
  3. A. J. den Boef, “Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing,” Surf. Topogr., vol. 4, p. 023001, 2016.
  4. J. Endres, A. Diener, M. Wurm, and B. Bodermann, “Investigations of the influence of common approximations in scatterometry for dimensional nanometrology,” Meas. Sci. Technol., vol. 25, p. 044004, 2014.
  5. R. L. Jones, T. Hu, E. K. Lin, W.-L. Wu, R. Kolb, D. M. Casa, P. J. Bolton, and G. G. Barclay, “Small angle X-ray scattering for sub-100 nm pattern characterization,” Appl. Phys. Lett., vol. 83, p. 4059, 2003.
  6. S. O’Mullane, N. Keller, and A. C. Diebold, “Modeling ellipsometric measurement of three-dimensional structures with rigorous coupled wave analysis and finite element method simulations,” J. Micro. Nanolithogr. MEMS MOEMS, vol. 15, p. 044003, 2016.
  7. R. K. Attota, P. Weck, J. A. Kramar, B. Bunday, and V. Vartanian, “Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy,” Opt. Express, vol. 24, p. 16574, 2016.
  8. V. Soltwisch, A. Haase, J. Wernecke, J. Probst, M. Schoengen, S. Burger, M. Krumrey, and F. Scholze, “Correlated diffuse x-ray scattering from periodically nanostructured surfaces,” Phys. Rev. B, vol. 94, p. 035419, 2016.
  9. M. Hammerschmidt, M. Weiser, X. G. Santiago, L. Zschiedrich, B. Bodermann, and S. Burger, “Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion,” Proc. SPIE, vol. 10330, p. 1033004, 2017.
  10. R. B. Storch, L. C. Pimentel, and H. R. Orlande, “Identification of atmospheric boundary layer parameters by inverse problem,” Atmospheric Environment, vol. 41, no. 7, pp. 1417–1425, 2007.
  11. P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction,” ACS Photonics, vol. 6, no. 11, pp. 2726–2733, 2019.
  12. F. Pace, A. Santilano, and A. Godio, “Particle swarm optimization of 2D magnetotelluric data,” Geophysics, vol. 84, no. 3, pp. E125–E141, 03 2019.
  13. M. Schwaab, E. C. Biscaia Jr, J. L. Monteiro, and J. C. Pinto, “Nonlinear parameter estimation through particle swarm optimization,” Chemical Engineering Science, vol. 63, no. 6, pp. 1542–1552, 2008.
  14. F. Lobato, V. Steffen Jr, and A. S. Neto, “Estimation of space-dependent single scattering albedo in a radiative transfer problem using differential evolution,” Inverse Problems in Science and Engineering, vol. 20, no. 7, pp. 1043–1055, 2012.
  15. A. A. Cavalini Jr, F. S. Lobato, E. H. Koroishi, and V. Steffen Jr, “Model updating of a rotating machine using the self-adaptive differential evolution algorithm,” Inverse Problems in Science and Engineering, vol. 24, no. 3, pp. 504–523, 2016.
  16. A. F. Herrero, M. Pflüger, J. Puls, F. Scholze, and V. Soltwisch, “Uncertainties in the reconstruction of nanostructures in EUV scatterometry and grazing incidence small-angle X-ray scattering,” Opt. Express, vol. 29, pp. 35 580–35 591, 2021.
  17. M. Plock, K. Andrle, S. Burger, and P.-I. Schneider, “Bayesian target-vector optimization for efficient parameter reconstruction,” Adv. Theory Simul., vol. 5, no. 10, p. 2200112, 2022.
  18. A. Andrle, P. Hönicke, G. Gwalt, P.-I. Schneider, Y. Kayser, F. Siewert, and V. Soltwisch, “Shape- and Element-Sensitive Reconstruction of Periodic Nanostructures with Grazing Incidence X-ray Fluorescence Analysis and Machine Learning,” Nanomaterials, vol. 11, p. 1647, 2021.
  19. L. Martino, F. Llorente, E. Curbelo, J. López-Santiago, and J. Míguez, “Automatic tempered posterior distributions for bayesian inversion problems,” Mathematics, vol. 9, no. 7, p. 784, 2021.
  20. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math., vol. 2, no. 2, pp. 164–168, 1944.
  21. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.
  22. R. Fletcher, “A modified Marquardt subroutine for non-linear least squares,” Atomic Energy Research Establishment, Harwell (England), Tech. Rep. AERE-R-6799, 1971.
  23. E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning,” arXiv preprint, arXiv:1012.2599, 2010.
  24. D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Global Optim., vol. 13, pp. 455–492, 1998.
  25. P.-I. Schneider, M. Hammerschmidt, L. Zschiedrich, and S. Burger, “Using Gaussian process regression for efficient parameter reconstruction,” Proc. SPIE, vol. 10959, p. 1095911, 2019.
  26. R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound constrained optimization,” SIAM J. Sci. Comp., vol. 16, no. 5, pp. 1190–1208, 1995.
  27. A. K. Uhrenholt and B. S. Jensen, “Efficient Bayesian optimization for target vector estimation,” in The 22nd International Conference on Artificial Intelligence and Statistics.   PMLR, 2019, pp. 2661–2670.
  28. M. A. Alvarez, L. Rosasco, and N. D. Lawrence, “Kernels for vector-valued functions: A review,” arXiv preprint arXiv:1106.6251, 2011.
  29. H. Liu, J. Cai, and Y.-S. Ong, “Remarks on multi-output Gaussian process regression,” Knowl.-Based Syst., vol. 144, pp. 102–121, 2018.
  30. K. Matsui, S. Kusakawa, K. Ando, K. Kutsukake, T. Ujihara, and I. Takeuchi, “Bayesian active learning for structured output design,” arXiv preprint, arXiv:1911.03671, 2019.
  31. A. A. Mohsenipour, “On the distribution of quadratic expressions in various types of random vectors,” Ph.D. dissertation, University of Western Ontario, 2012.
  32. P.-I. Schneider, P. Manley, J. Krüger, L. Zschiedrich, R. Köning, B. Bodermann, and S. Burger, “Reconstructing phase aberrations for high-precision dimensional microscopy,” Proc. SPIE, vol. 12137, p. 121370I, 2022.
  33. X. Garcia-Santiago, P.-I. Schneider, C. Rockstuhl, and S. Burger, “Shape design of a reflecting surface using bayesian optimization,” J. Phys. Conf. Ser., vol. 963, p. 012003, 2018.
  34. C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction to MCMC for machine learning,” Mach. Learn., vol. 50, no. 1, pp. 5–43, 2003.
  35. D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac., vol. 125, no. 925, p. 306, 2013.
  36. D. Foreman-Mackey, “corner.py: Scatterplot matrices in python,” The Journal of Open Source Software, vol. 1, no. 2, p. 24, 2016.
  37. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi B, vol. 244, no. 10, p. 3419, 2007.
  38. S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: An adaptive FEM solver for precise simulations in nano-optics,” in Integrated Photonics and Nanophotonics Research and Applications.   Optical Society of America, 2008, p. ITuE4.
  39. V. Soltwisch, P. Hönicke, Y. Kayser, J. Eilbracht, J. Probst, F. Scholze, and B. Beckhoff, “Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence,” Nanoscale, vol. 10, pp. 6177–6185, 2018.

Summary

We haven't generated a summary for this paper yet.