Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structural Model Updating Using Adaptive Multi-Response Gaussian Process Meta-modeling (2004.11698v1)

Published 16 Apr 2020 in cs.CE, eess.SP, stat.CO, and stat.ME

Abstract: Finite element model updating utilizing frequency response functions as inputs is an important procedure in structural analysis, design and control. This paper presents a highly efficient framework that is built upon Gaussian process emulation to inversely identify model parameters through sampling. In particular, a multi-response Gaussian process (MRGP) meta-modeling approach is formulated that can accurately construct the error response surface, i.e., the discrepancies between the frequency response predictions and actual measurement. In order to reduce the computational cost of repeated finite element simulations, an adaptive sampling strategy is established, where the search of unknown parameters is guided by the response surface features. Meanwhile, the information of previously sampled model parameters and the corresponding errors is utilized as additional training data to refine the MRGP meta-model. Two stochastic optimization techniques, i.e., particle swarm and simulated annealing, are employed to train the MRGP meta-model for comparison. Systematic case studies are conducted to examine the accuracy and robustness of the new framework of model updating.

Citations (39)

Summary

We haven't generated a summary for this paper yet.