Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving irreducible stochastic mean-payoff games and entropy games by relative Krasnoselskii-Mann iteration (2305.02458v1)

Published 3 May 2023 in math.OC and cs.GT

Abstract: We analyse an algorithm solving stochastic mean-payoff games, combining the ideas of relative value iteration and of Krasnoselskii-Mann damping. We derive parameterized complexity bounds for several classes of games satisfying irreducibility conditions. We show in particular that an $\epsilon$-approximation of the value of an irreducible concurrent stochastic game can be computed in a number of iterations in $O(|\log\epsilon|)$ where the constant in the $O(\cdot)$ is explicit, depending on the smallest non-zero transition probabilities. This should be compared with a bound in $O(|\epsilon|{-1}|\log(\epsilon)|)$ obtained by Chatterjee and Ibsen-Jensen (ICALP 2014) for the same class of games, and to a $O(|\epsilon|{-1})$ bound by Allamigeon, Gaubert, Katz and Skomra (ICALP 2022) for turn-based games. We also establish parameterized complexity bounds for entropy games, a class of matrix multiplication games introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. We derive these results by methods of variational analysis, establishing contraction properties of the relative Krasnoselskii-Mann iteration with respect to Hilbert's semi-norm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.