Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Complexity Bounds Based on Value Iteration for Stochastic Mean Payoff Games and Entropy Games (2206.09044v2)

Published 17 Jun 2022 in cs.GT

Abstract: We develop value iteration-based algorithms to solve in a unified manner different classes of combinatorial zero-sum games with mean-payoff type rewards. These algorithms rely on an oracle, evaluating the dynamic programming operator up to a given precision. We show that the number of calls to the oracle needed to determine exact optimal (positional) strategies is, up to a factor polynomial in the dimension, of order R/sep, where the "separation" sep is defined as the minimal difference between distinct values arising from strategies, and R is a metric estimate, involving the norm of approximate sub and super-eigenvectors of the dynamic programming operator. We illustrate this method by two applications. The first one is a new proof, leading to improved complexity estimates, of a theorem of Boros, Elbassioni, Gurvich and Makino, showing that turn-based mean-payoff games with a fixed number of random positions can be solved in pseudo-polynomial time. The second one concerns entropy games, a model introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. The rank of an entropy game is defined as the maximal rank among all the ambiguity matrices determined by strategies of the two players. We show that entropy games with a fixed rank, in their original formulation, can be solved in polynomial time, and that an extension of entropy games incorporating weights can be solved in pseudo-polynomial time under the same fixed rank condition.

Summary

We haven't generated a summary for this paper yet.