Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

An unbiased non-parametric correlation estimator in the presence of ties (2305.00965v1)

Published 1 May 2023 in stat.ME

Abstract: An inner-product Hilbert space formulation of the Kemeny distance is defined over the domain of all permutations with ties upon the extended real line, and results in an unbiased minimum variance (Gauss-Markov) correlation estimator upon a homogeneous i.i.d. sample. In this work, we construct and prove the necessary requirements to extend this linear topology for both Spearman's (\rho) and Kendall's (\tau_{b}), showing both spaces to be both biased and inefficient upon practical data domains. A probability distribution is defined for the Kemeny (\tau_{\kappa}) estimator, and a Studentisation adjustment for finite samples is provided as well. This work allows for a general purpose linear model duality to be identified as a unique consistent solution to many biased and unbiased estimation scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)