Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

SkinSAM: Empowering Skin Cancer Segmentation with Segment Anything Model (2304.13973v1)

Published 27 Apr 2023 in cs.CV

Abstract: Skin cancer is a prevalent and potentially fatal disease that requires accurate and efficient diagnosis and treatment. Although manual tracing is the current standard in clinics, automated tools are desired to reduce human labor and improve accuracy. However, developing such tools is challenging due to the highly variable appearance of skin cancers and complex objects in the background. In this paper, we present SkinSAM, a fine-tuned model based on the Segment Anything Model that showed outstanding segmentation performance. The models are validated on HAM10000 dataset which includes 10015 dermatoscopic images. While larger models (ViT_L, ViT_H) performed better than the smaller one (ViT_b), the finetuned model (ViT_b_finetuned) exhibited the greatest improvement, with a Mean pixel accuracy of 0.945, Mean dice score of 0.8879, and Mean IoU score of 0.7843. Among the lesion types, vascular lesions showed the best segmentation results. Our research demonstrates the great potential of adapting SAM to medical image segmentation tasks.

Citations (47)

Summary

We haven't generated a summary for this paper yet.