Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI-based Predictive Analytic Approaches for safeguarding the Future of Electric/Hybrid Vehicles (2304.13841v1)

Published 26 Apr 2023 in cs.AI and cs.CY

Abstract: In response to the global need for sustainable energy, green technology may help fight climate change. Before green infrastructure to be easily integrated into the world's energy system, it needs upgrading. By improving energy infrastructure and decision-making, AI may help solve this challenge. EHVs have grown in popularity because to concerns about global warming and the need for more ecologically friendly transportation. EHVs may work better with cutting-edge technologies like AI. Electric vehicles (EVs) reduce greenhouse gas emissions and promote sustainable mobility. Electric automobiles (EVs) are growing in popularity due to their benefits for climate change mitigation and sustainable mobility. Unfortunately, EV production consumes a lot of energy and materials, which may harm nature. EV production is being improved using green technologies like artificial intelligence and predictive analysis. Electric and hybrid vehicles (EHVs) may help meet the need for ecologically friendly transportation. However, the Battery Management System (BMS) controls EHV performance and longevity. AI may improve EHV energy efficiency, emissions reduction, and sustainability. Remote hijacking, security breaches, and unauthorized access are EHV cybersecurity vulnerabilities addressed in the article. AI research and development may help make transportation more sustainable, as may optimizing EHVs and charging infrastructure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.