Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MRI Recovery with Self-Calibrated Denoisers without Fully-Sampled Data (2304.12890v4)

Published 25 Apr 2023 in eess.IV

Abstract: Objective: Acquiring fully sampled training data is challenging for many MRI applications. We present a self-supervised image reconstruction method, termed ReSiDe, capable of recovering images solely from undersampled data. Materials and Methods: ReSiDe is inspired by plug-and-play (PnP) methods, but unlike traditional PnP approaches that utilize pre-trained denoisers, ReSiDe iteratively trains the denoiser on the image or images that are being reconstructed. We introduce two variations of our method: ReSiDe-S and ReSiDe-M. ReSiDe-S is scan-specific and works with a single set of undersampled measurements, while ReSiDe-M operates on multiple sets of undersampled measurements and provides faster inference. Studies I, II, and III compare ReSiDe-S and ReSiDe-M against other self-supervised or unsupervised methods using data from T1- and T2-weighted brain MRI, MRXCAT digital perfusion phantom, and first-pass cardiac perfusion, respectively. Results: ReSiDe-S and ReSiDe-M outperform other methods in terms of peak signal-to-noise ratio and structural similarity index measure for Studies I and II, and in terms of expert scoring for Study III. Discussion: We present a self-supervised image reconstruction method and validate it in both static and dynamic MRI applications. These developments can benefit MRI applications where the availability of fully sampled training data is limited.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com