Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 TPS
Gemini 2.5 Pro 47 TPS Pro
GPT-5 Medium 38 TPS
GPT-5 High 32 TPS Pro
GPT-4o 88 TPS
GPT OSS 120B 477 TPS Pro
Kimi K2 235 TPS Pro
2000 character limit reached

Identifying Stochasticity in Time-Series with Autoencoder-Based Content-aware 2D Representation: Application to Black Hole Data (2304.11560v1)

Published 23 Apr 2023 in cs.LG, astro-ph.IM, cs.CV, and eess.SP

Abstract: In this work, we report an autoencoder-based 2D representation to classify a time-series as stochastic or non-stochastic, to understand the underlying physical process. Content-aware conversion of 1D time-series to 2D representation, that simultaneously utilizes time- and frequency-domain characteristics, is proposed. An autoencoder is trained with a loss function to learn latent space (using both time- and frequency domains) representation, that is designed to be, time-invariant. Every element of the time-series is represented as a tuple with two components, one each, from latent space representation in time- and frequency-domains, forming a binary image. In this binary image, those tuples that represent the points in the time-series, together form the ``Latent Space Signature" (LSS) of the input time-series. The obtained binary LSS images are fed to a classification network. The EfficientNetv2-S classifier is trained using 421 synthetic time-series, with fair representation from both categories. The proposed methodology is evaluated on publicly available astronomical data which are 12 distinct temporal classes of time-series pertaining to the black hole GRS 1915 + 105, obtained from RXTE satellite. Results obtained using the proposed methodology are compared with existing techniques. Concurrence in labels obtained across the classes, illustrates the efficacy of the proposed 2D representation using the latent space co-ordinates. The proposed methodology also outputs the confidence in the classification label.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.