Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 TPS
Gemini 2.5 Pro 37 TPS Pro
GPT-5 Medium 38 TPS
GPT-5 High 27 TPS Pro
GPT-4o 90 TPS
GPT OSS 120B 467 TPS Pro
Kimi K2 139 TPS Pro
2000 character limit reached

Model-Coupled Autoencoder for Time Series Visualisation (1601.05654v1)

Published 21 Jan 2016 in astro-ph.IM and cs.NE

Abstract: We present an approach for the visualisation of a set of time series that combines an echo state network with an autoencoder. For each time series in the dataset we train an echo state network, using a common and fixed reservoir of hidden neurons, and use the optimised readout weights as the new representation. Dimensionality reduction is then performed via an autoencoder on the readout weight representations. The crux of the work is to equip the autoencoder with a loss function that correctly interprets the reconstructed readout weights by associating them with a reconstruction error measured in the data space of sequences. This essentially amounts to measuring the predictive performance that the reconstructed readout weights exhibit on their corresponding sequences when plugged back into the echo state network with the same fixed reservoir. We demonstrate that the proposed visualisation framework can deal both with real valued sequences as well as binary sequences. We derive magnification factors in order to analyse distance preservations and distortions in the visualisation space. The versatility and advantages of the proposed method are demonstrated on datasets of time series that originate from diverse domains.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.