Searching for Heavy Dark Matter near the Planck Mass with XENON1T (2304.10931v1)
Abstract: Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from Multiply-Interacting Massive Particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This work places strong constraints on spin-independent interactions of dark matter particles with a mass between 1$\times$10${12}\,$GeV/c$2$ and 2$\times$10${17}\,$GeV/c$2$. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross-sections for dark matter particles with masses close to the Planck scale.
- J. Billard et al., Rept. Prog. Phys. 85, 056201 (2022), arXiv:2104.07634 [hep-ex] .
- F. Takahashi, Phys. Lett. B 660, 100 (2008), arXiv:0705.0579 .
- J. H. MacGibbon, Nature 329, 308 (1987).
- J. Maldacena, JHEP 04, 079 (2021), arXiv:2004.06084 .
- M. W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).
- R. Bernabei et al., Phys. Rev. Lett. 83, 4918 (1999).
- E. Aprile et al. (XENON), Phys. Rev. Lett. 122, 141301 (2019a), arXiv:1902.03234 .
- D. Baxter et al., Eur. Phys. J. C 81, 907 (2021), arXiv:2105.00599 [hep-ex] .
- J. Read, J. Phys. G 41, 063101 (2014), arXiv:1404.1938 .
- E. Aprile et al. (XENON), Phys. Rev. Lett. 121, 111302 (2018), arXiv:1805.12562 .
- E. Aprile et al. (XENON), Eur. Phys. J. C 77, 881 (2017), arXiv:1708.07051 .
- M. Freytsis and Z. Ligeti, Phys. Rev. D 83, 115009 (2011), arXiv:1012.5317 .
- R. H. Helm, Phys. Rev. 104, 1466 (1956).
- M. T. Ressell and D. J. Dean, Phys. Rev. C 56, 535 (1997), arXiv:hep-ph/9702290 .
- V. A. Bednyakov and F. Simkovic, Phys. Part. Nucl. 36, 131 (2005), arXiv:hep-ph/0406218 .
- XENON Collaboration, “The pax data processor v6.8.0,” (2018).
- J. Aalbers, B. Pelssers, J. R. Angevaare, and K. D. Morå, “Wimprates,” (2022).
- M. Szydagis, J. Balajthy, G. Block, J. Brodsky, J. Cutter, S. Farrell, J. Huang, E. Kozlova, B. Lenardo, A. Manalaysay, D. McKinsey, M. Mooney, J. Mueller, K. Ni, G. Rischbieter, M. Tripathi, C. Tunnell, V. Velan, and Z. Zhao, “Noble element simulation technique,” (2022).
- E. Aprile et al. (XENON), Phys. Rev. D 99, 112009 (2019b), arXiv:1902.11297 .
- E. Aprile et al. (XENON100), J. Phys. G 41, 035201 (2014a), arXiv:1311.1088 .
- E. Aprile et al. (XENON1T), JINST 9, P11006 (2014b), arXiv:1406.2374 .
- M. Aglietta et al. (LVD), Phys. Rev. D 58, 092005 (1998), arXiv:hep-ex/9806001 .
- E. Aprile et al. (XENON), Phys. Rev. D 100, 052014 (2019c), arXiv:1906.04717 .
- G. F. Jenks, in International Yearbook of Cartography, 7 (1967) pp. 186–190.
- S. I. Alvis et al. (Majorana), Phys. Rev. Lett. 120, 211804 (2018), arXiv:1801.10145 [hep-ex] .
- P. Adhikari et al. (DEAP Collaboration), Phys. Rev. Lett. 128, 011801 (2022), arXiv:2108.09405 .
- G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998), arXiv:physics/9711021 .
- B. Broerman, New ideas for tonne-scale bubble chambers and a search for superheavy dark matter with PICO-60, Ph.D. thesis, Queen’s U., Kingston (2022).
- E. Aprile et al. (XENON), JCAP 11, 031 (2020), arXiv:2007.08796 .
- D. S. Akerib et al. (LZ), Phys. Rev. D 101, 052002 (2020), arXiv:1802.06039 .
- C. E. Aalseth et al. (DarkSide-20k), Eur. Phys. J. Plus 133, 131 (2018), arXiv:1707.08145 .
- J. Aalbers et al. (DARWIN), JCAP 11, 017 (2016), arXiv:1606.07001 [astro-ph.IM] .
- J. Aalbers et al., J. Phys. G 50, 013001 (2023), arXiv:2203.02309 [physics.ins-det] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.