Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Searching for Heavy Dark Matter near the Planck Mass with XENON1T (2304.10931v1)

Published 21 Apr 2023 in hep-ex and physics.ins-det

Abstract: Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from Multiply-Interacting Massive Particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This work places strong constraints on spin-independent interactions of dark matter particles with a mass between 1$\times$10${12}\,$GeV/c$2$ and 2$\times$10${17}\,$GeV/c$2$. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross-sections for dark matter particles with masses close to the Planck scale.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. J. Billard et al., Rept. Prog. Phys. 85, 056201 (2022), arXiv:2104.07634 [hep-ex] .
  2. F. Takahashi, Phys. Lett. B 660, 100 (2008), arXiv:0705.0579 .
  3. J. H. MacGibbon, Nature 329, 308 (1987).
  4. J. Maldacena, JHEP 04, 079 (2021), arXiv:2004.06084 .
  5. M. W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).
  6. R. Bernabei et al., Phys. Rev. Lett. 83, 4918 (1999).
  7. E. Aprile et al. (XENON), Phys. Rev. Lett. 122, 141301 (2019a), arXiv:1902.03234 .
  8. D. Baxter et al., Eur. Phys. J. C 81, 907 (2021), arXiv:2105.00599 [hep-ex] .
  9. J. Read, J. Phys. G 41, 063101 (2014), arXiv:1404.1938 .
  10. E. Aprile et al. (XENON), Phys. Rev. Lett. 121, 111302 (2018), arXiv:1805.12562 .
  11. E. Aprile et al. (XENON), Eur. Phys. J. C 77, 881 (2017), arXiv:1708.07051 .
  12. M. Freytsis and Z. Ligeti, Phys. Rev. D 83, 115009 (2011), arXiv:1012.5317 .
  13. R. H. Helm, Phys. Rev. 104, 1466 (1956).
  14. M. T. Ressell and D. J. Dean, Phys. Rev. C 56, 535 (1997), arXiv:hep-ph/9702290 .
  15. V. A. Bednyakov and F. Simkovic, Phys. Part. Nucl. 36, 131 (2005), arXiv:hep-ph/0406218 .
  16. XENON Collaboration, “The pax data processor v6.8.0,”  (2018).
  17. J. Aalbers, B. Pelssers, J. R. Angevaare,  and K. D. Morå, “Wimprates,”  (2022).
  18. M. Szydagis, J. Balajthy, G. Block, J. Brodsky, J. Cutter, S. Farrell, J. Huang, E. Kozlova, B. Lenardo, A. Manalaysay, D. McKinsey, M. Mooney, J. Mueller, K. Ni, G. Rischbieter, M. Tripathi, C. Tunnell, V. Velan,  and Z. Zhao, “Noble element simulation technique,”  (2022).
  19. E. Aprile et al. (XENON), Phys. Rev. D 99, 112009 (2019b), arXiv:1902.11297 .
  20. E. Aprile et al. (XENON100), J. Phys. G 41, 035201 (2014a), arXiv:1311.1088 .
  21. E. Aprile et al. (XENON1T), JINST 9, P11006 (2014b), arXiv:1406.2374 .
  22. M. Aglietta et al. (LVD), Phys. Rev. D 58, 092005 (1998), arXiv:hep-ex/9806001 .
  23. E. Aprile et al. (XENON), Phys. Rev. D 100, 052014 (2019c), arXiv:1906.04717 .
  24. G. F. Jenks, in International Yearbook of Cartography, 7 (1967) pp. 186–190.
  25. S. I. Alvis et al. (Majorana), Phys. Rev. Lett. 120, 211804 (2018), arXiv:1801.10145 [hep-ex] .
  26. P. Adhikari et al. (DEAP Collaboration), Phys. Rev. Lett. 128, 011801 (2022), arXiv:2108.09405 .
  27. G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998), arXiv:physics/9711021 .
  28. B. Broerman, New ideas for tonne-scale bubble chambers and a search for superheavy dark matter with PICO-60, Ph.D. thesis, Queen’s U., Kingston (2022).
  29. E. Aprile et al. (XENON), JCAP 11, 031 (2020), arXiv:2007.08796 .
  30. D. S. Akerib et al. (LZ), Phys. Rev. D 101, 052002 (2020), arXiv:1802.06039 .
  31. C. E. Aalseth et al. (DarkSide-20k), Eur. Phys. J. Plus 133, 131 (2018), arXiv:1707.08145 .
  32. J. Aalbers et al. (DARWIN), JCAP 11, 017 (2016), arXiv:1606.07001 [astro-ph.IM] .
  33. J. Aalbers et al., J. Phys. G 50, 013001 (2023), arXiv:2203.02309 [physics.ins-det] .
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.