Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Realizing the Value of Labeled Target Samples: a Two-Stage Approach for Semi-Supervised Domain Adaptation (2304.10762v1)

Published 21 Apr 2023 in cs.CV and cs.AI

Abstract: Semi-Supervised Domain Adaptation (SSDA) is a recently emerging research topic that extends from the widely-investigated Unsupervised Domain Adaptation (UDA) by further having a few target samples labeled, i.e., the model is trained with labeled source samples, unlabeled target samples as well as a few labeled target samples. Compared with UDA, the key to SSDA lies how to most effectively utilize the few labeled target samples. Existing SSDA approaches simply merge the few precious labeled target samples into vast labeled source samples or further align them, which dilutes the value of labeled target samples and thus still obtains a biased model. To remedy this, in this paper, we propose to decouple SSDA as an UDA problem and a semi-supervised learning problem where we first learn an UDA model using labeled source and unlabeled target samples and then adapt the learned UDA model in a semi-supervised way using labeled and unlabeled target samples. By utilizing the labeled source samples and target samples separately, the bias problem can be well mitigated. We further propose a consistency learning based mean teacher model to effectively adapt the learned UDA model using labeled and unlabeled target samples. Experiments show our approach outperforms existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. mengqun Jin (2 papers)
  2. Kai Li (313 papers)
  3. Shuyan Li (11 papers)
  4. Chunming He (21 papers)
  5. Xiu Li (166 papers)

Summary

We haven't generated a summary for this paper yet.