Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Domain Adaptation via Adaptive and Progressive Feature Alignment (2106.02845v1)

Published 5 Jun 2021 in cs.CV

Abstract: Contemporary domain adaptive semantic segmentation aims to address data annotation challenges by assuming that target domains are completely unannotated. However, annotating a few target samples is usually very manageable and worthwhile especially if it improves the adaptation performance substantially. This paper presents SSDAS, a Semi-Supervised Domain Adaptive image Segmentation network that employs a few labeled target samples as anchors for adaptive and progressive feature alignment between labeled source samples and unlabeled target samples. We position the few labeled target samples as references that gauge the similarity between source and target features and guide adaptive inter-domain alignment for learning more similar source features. In addition, we replace the dissimilar source features by high-confidence target features continuously during the iterative training process, which achieves progressive intra-domain alignment between confident and unconfident target features. Extensive experiments show the proposed SSDAS greatly outperforms a number of baselines, i.e., UDA-based semantic segmentation and SSDA-based image classification. In addition, SSDAS is complementary and can be easily incorporated into UDA-based methods with consistent improvements in domain adaptive semantic segmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiaxing Huang (68 papers)
  2. Dayan Guan (26 papers)
  3. Aoran Xiao (24 papers)
  4. Shijian Lu (151 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.