Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Wind Power Forecast Precision via Multi-head Attention Transformer: An Investigation on Single-step and Multi-step Forecasting (2304.10758v1)

Published 21 Apr 2023 in eess.SY and cs.SY

Abstract: The main objective of this study is to propose an enhanced wind power forecasting (EWPF) transformer model for handling power grid operations and boosting power market competition. It helps reliable large-scale integration of wind power relies in large part on accurate wind power forecasting (WPF). The proposed model is evaluated for single-step and multi-step WPF, and compared with gated recurrent unit (GRU) and long short-term memory (LSTM) models on a wind power dataset. The results of the study indicate that the proposed EWPF transformer model outperforms conventional recurrent neural network (RNN) models in terms of time-series forecasting accuracy. In particular, the results reveal a minimum performance improvement of 5% and a maximum of 20% compared to LSTM and GRU. These results indicate that the EWPF transformer model provides a promising alternative for wind power forecasting and has the potential to significantly improve the precision of WPF. The findings of this study have implications for energy producers and researchers in the field of WPF.

Citations (4)

Summary

We haven't generated a summary for this paper yet.