Bias correction of wind power forecasts with SCADA data and continuous learning (2402.13916v1)
Abstract: Wind energy plays a critical role in the transition towards renewable energy sources. However, the uncertainty and variability of wind can impede its full potential and the necessary growth of wind power capacity. To mitigate these challenges, wind power forecasting methods are employed for applications in power management, energy trading, or maintenance scheduling. In this work, we present, evaluate, and compare four machine learning-based wind power forecasting models. Our models correct and improve 48-hour forecasts extracted from a numerical weather prediction (NWP) model. The models are evaluated on datasets from a wind park comprising 65 wind turbines. The best improvement in forecasting error and mean bias was achieved by a convolutional neural network, reducing the average NRMSE down to 22%, coupled with a significant reduction in mean bias, compared to a NRMSE of 35% from the strongly biased baseline model using uncorrected NWP forecasts. Our findings further indicate that changes to neural network architectures play a minor role in affecting the forecasting performance, and that future research should rather investigate changes in the model pipeline. Moreover, we introduce a continuous learning strategy, which is shown to achieve the highest forecasting performance improvements when new data is made available.
- IEA. Renewables. Paris: IEA; 2022. Available from: https://www.iea.org/reports/renewables-2022. IEA [2022] IEA. Wind Electricity. Paris: IEA; 2022. Available from: https://www.iea.org/reports/wind-electricity. Haupt and Mahoney [2015] Haupt SE, Mahoney WP. Taming wind power with better forecasts. IEEE Spectrum. 2015;52(11):47–52. Number: 11 Publisher: IEEE. Jung and Broadwater [2014] Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. IEA. Wind Electricity. Paris: IEA; 2022. Available from: https://www.iea.org/reports/wind-electricity. Haupt and Mahoney [2015] Haupt SE, Mahoney WP. Taming wind power with better forecasts. IEEE Spectrum. 2015;52(11):47–52. Number: 11 Publisher: IEEE. Jung and Broadwater [2014] Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Haupt SE, Mahoney WP. Taming wind power with better forecasts. IEEE Spectrum. 2015;52(11):47–52. Number: 11 Publisher: IEEE. Jung and Broadwater [2014] Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- IEA. Wind Electricity. Paris: IEA; 2022. Available from: https://www.iea.org/reports/wind-electricity. Haupt and Mahoney [2015] Haupt SE, Mahoney WP. Taming wind power with better forecasts. IEEE Spectrum. 2015;52(11):47–52. Number: 11 Publisher: IEEE. Jung and Broadwater [2014] Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Haupt SE, Mahoney WP. Taming wind power with better forecasts. IEEE Spectrum. 2015;52(11):47–52. Number: 11 Publisher: IEEE. Jung and Broadwater [2014] Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Haupt SE, Mahoney WP. Taming wind power with better forecasts. IEEE Spectrum. 2015;52(11):47–52. Number: 11 Publisher: IEEE. Jung and Broadwater [2014] Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Jung J, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renewable and Sustainable Energy Reviews. 2014 Mar;31:762–777. 10.1016/j.rser.2013.12.054. Al-Yahyai et al. [2010] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Al-Yahyai S, Charabi Y, Gastli A. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews. 2010 Dec;14(9):3192–3198. Number: 9. 10.1016/j.rser.2010.07.001. Kavasseri and Seetharaman [2009] Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy. 2009 May;34(5):1388–1393. 10.1016/j.renene.2008.09.006. Louka et al. [2008] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics. 2008 Dec;96(12):2348–2362. Number: 12. 10.1016/j.jweia.2008.03.013. Putz et al. [2021] Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Putz D, Gumhalter M, Auer H. A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- A novel approach to multi-horizon wind power forecasting based on deep neural architecture. Renewable Energy. 2021 Nov;178:494–505. 10.1016/j.renene.2021.06.099. Gan et al. [2021] Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gan Z, Li C, Zhou J, Tang G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Temporal convolutional networks interval prediction model for wind speed forecasting. Electric Power Systems Research. 2021 Feb;191:106865. 10.1016/j.epsr.2020.106865. Wang et al. [2021] Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- A review of wind speed and wind power forecasting with deep neural networks. Applied Energy. 2021 Dec;304:117766. 10.1016/j.apenergy.2021.117766. Larson and Westrick [2006] Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energ. 2006 Jan;9(1-2):55–62. Number: 1-2. 10.1002/we.179. Yan et al. [2013] Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renewable and Sustainable Energy Reviews. 2013 Nov;27:613–621. 10.1016/j.rser.2013.07.026. Pearre and Swan [2018] Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Pearre NS, Swan LG. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technologies and Assessments. 2018 Jun;27:180–191. 10.1016/j.seta.2018.04.010. Wang et al. [2017] Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wang H, Yan J, Liu Y, Han S, Li L, Zhao J. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. J Phys: Conf Ser. 2017 Nov;926:012007. 10.1088/1742-6596/926/1/012007. Xu et al. [2015] Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Xu Q, He D, Zhang N, Kang C, Xia Q, Bai J, et al. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans Sustain Energy. 2015 Oct;6(4):1283–1291. Number: 4. 10.1109/TSTE.2015.2429586. Qu et al. [2013] Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Qu G, Mei J, He D. Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Short-term wind power forecasting based on numerical weather prediction adjustment. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). Bochum, Germany: IEEE; 2013. p. 453–457. Zhao et al. [2012] Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhao P, Wang J, Xia J, Dai Y, Sheng Y, Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy. 2012 Jul;43:234–241. 10.1016/j.renene.2011.11.051. Lima et al. [2017] Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Lima JM, Guetter AK, Freitas SR, Panetta J, de Mattos JGZ. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst. 2017 Oct;28(5):679–691. Number: 5. 10.1007/s40313-017-0329-8. Chen et al. [2014] Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen N, Qian Z, Nabney IT, Meng X. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans Power Syst. 2014 Mar;29(2):656–665. Number: 2. 10.1109/TPWRS.2013.2282366. Hoolohan et al. [2018] Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hoolohan V, Tomlin AS, Cockerill T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy. 2018 Oct;126:1043–1054. 10.1016/j.renene.2018.04.019. Eseye et al. [2017] Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Eseye AT, Zhang J, Zheng D, Ma H, Jingfu G. Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. Beijing, China: IEEE; 2017. p. 552–556. Donadio et al. [2021] Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Donadio L, Fang J, Porté-Agel F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies. 2021 Jan;14(2):338. Number: 2. 10.3390/en14020338. Felder et al. [2010] Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Felder M, Kaifel A, Graves A. Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Wind power prediction using mixture density recurrent neural networks; 2010. . López et al. [2018] López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. López E, Valle C, Allende H, Gil E, Madsen H. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies. 2018 Feb;11(3):526. Number: 3. 10.3390/en11030526. Fu et al. [2018] Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Fu Y, Hu W, Tang M, Yu R, Liu B. Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE; 2018. p. 217–222. Wu et al. [2019] Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Wu Y, Wu Q, Zhu J. Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Data‐driven wind speed forecasting using deep feature extraction and LSTM. IET Renewable Power Generation. 2019 Sep;13(12):2062–2069. Number: 12. 10.1049/iet-rpg.2018.5917. Zhang et al. [2019] Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang J, Yan J, Infield D, Liu Y, Lien Fs. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy. 2019 May;241:229–244. 10.1016/j.apenergy.2019.03.044. Salazar et al. [2022] Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Salazar AA, Che Y, Zheng J, Xiao F. Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Multivariable neural network to postprocess short‐term, hub‐height wind forecasts. Energy Science & Engineering. 2022 Jul;10(7):2561–2575. Number: 7. 10.1002/ese3.928. Zhang et al. [2021] Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Zhang H, Yan J, Liu Y, Gao Y, Han S, Li L. Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction. IEEE Trans Sustain Energy. 2021 Oct;12(4):2205–2218. Number: 4. 10.1109/TSTE.2021.3086851. Freund and Schapire [1997] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences. 1997;55(1):119–139. Number: 1 Publisher: Elsevier. Friedman et al. [2000] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000;28(2):337–407. Number: 2 Publisher: Institute of Mathematical Statistics. Friedman [2001] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;p. 1189–1232. Publisher: JSTOR. Nair and Hinton [2010] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 807–814. Ioffe and Szegedy [2015] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr; 2015. p. 448–456. Srivastava et al. [2014] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research. 2014;15(1):1929–1958. Number: 1 Publisher: JMLR. org. Kingma and Ba [2014] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [Preprint]; 2014. Available from: https://arxiv.org/abs/1412.6980. Gers et al. [2000] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Learning to forget: Continual prediction with LSTM. Neural computation. 2000;12(10):2451–2471. Number: 10 Publisher: MIT Press. Hochreiter and Schmidhuber [1997] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–1780. Number: 8 Publisher: MIT press. Graves et al. [2005] Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Graves A, Fernández S, Schmidhuber J. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Bidirectional LSTM networks for improved phoneme classification and recognition. In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15. Springer; 2005. p. 799–804. Goodfellow et al. [2016] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Deep Learning. MIT Press; 2016. LeCun et al. [1989] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541–551. Number: 4 Publisher: MIT Press. Li et al. [2021] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021;Publisher: IEEE. Pedregosa et al. [2011] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Chollet and others [2015] Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Chollet F, others.: Keras. Available from: https://keras.io. Chen and Liu [2018] Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Chen Z, Liu B. In: Continual Learning and Catastrophic Forgetting. Cham: Springer International Publishing; 2018. p. 55–75. Iman et al. [2023] Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040. Iman M, Arabnia HR, Rasheed K. A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- A Review of Deep Transfer Learning and Recent Advancements. Technologies. 2023;11(2):40. 10.3390/technologies11020040.
- Stefan Jonas (6 papers)
- Kevin Winter (1 paper)
- Bernhard Brodbeck (3 papers)
- Angela Meyer (13 papers)