Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal radio labelings of the Cartesian product of the generalized Peterson graph and tree (2304.10094v1)

Published 20 Apr 2023 in math.CO and cs.DM

Abstract: A radio labeling of a graph $G$ is a function $f : V(G) \rightarrow {0,1,2,\ldots}$ such that $|f(u)-f(v)| \geq diam(G) + 1 - d(u,v)$ for every pair of distinct vertices $u,v$ of $G$. The radio number of $G$, denoted by $rn(G)$, is the smallest number $k$ such that $G$ has radio labeling $f$ with max${f(v):v \in V(G)} = k$. In this paper, we give a lower bound for the radio number for the Cartesian product of the generalized Petersen graph and tree. We present two necessary and sufficient conditions, and three other sufficient conditions to achieve the lower bound. Using these results, we determine the radio number for the Cartesian product of the Peterson graph and stars.

Summary

We haven't generated a summary for this paper yet.