Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Network Approximation of Composition Functions: with application to PINNs (2304.07947v2)

Published 17 Apr 2023 in math.NA, cs.NA, and physics.comp-ph

Abstract: In this paper, we focus on approximating a natural class of functions that are compositions of smooth functions. Unlike the low-dimensional support assumption on the covariate, we demonstrate that composition functions have an intrinsic sparse structure if we assume each layer in the composition has a small degree of freedom. This fact can alleviate the curse of dimensionality in approximation errors by neural networks. Specifically, by using mathematical induction and the multivariate Faa di Bruno formula, we extend the approximation theory of deep neural networks to the composition functions case. Furthermore, combining recent results on the statistical error of deep learning, we provide a general convergence rate analysis for the PINNs method in solving elliptic equations with compositional solutions. We also present two simple illustrative numerical examples to demonstrate the effect of the intrinsic sparse structure in regression and solving PDEs.

Summary

We haven't generated a summary for this paper yet.