Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation by tree tensor networks in high dimensions: Sobolev and compositional functions (2112.01474v1)

Published 2 Dec 2021 in math.NA and cs.NA

Abstract: This paper is concerned with convergence estimates for fully discrete tree tensor network approximations of high-dimensional functions from several model classes. For functions having standard or mixed Sobolev regularity, new estimates generalizing and refining known results are obtained, based on notions of linear widths of multivariate functions. In the main results of this paper, such techniques are applied to classes of functions with compositional structure, which are known to be particularly suitable for approximation by deep neural networks. As shown here, such functions can also be approximated by tree tensor networks without a curse of dimensionality -- however, subject to certain conditions, in particular on the depth of the underlying tree. In addition, a constructive encoding of compositional functions in tree tensor networks is given.

Citations (11)

Summary

We haven't generated a summary for this paper yet.